This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2025, 21, 2694–2702, doi:10.3762/bjoc.21.207
Graphical Abstract
Scheme 1: Examples of hydrothiocyanation/cyclization of alkynes.
Figure 1: 1H and 19F NMR monitoring of 1a/NaSCN/AcOH (a, b) and 1g/NaSCN/AcOH (c, d) reaction mixtures in MeC...
Scheme 2: Plausible reaction mechanism.
Scheme 3: Oxidation of isothiazolium thiocyanate 2a.
Beilstein J. Org. Chem. 2022, 18, 420–428, doi:10.3762/bjoc.18.44
Scheme 1: Scope of the reaction of bromopropargylic alcohol 1a and phenols 2b–i.
Scheme 2: Reaction of bromopropargylic alcohol 1b and phenols 2a and 2d.
Scheme 3: Reaction of bromopropargylic alcohol 1c and phenol (2a).
Scheme 4: Reaction of chloropropargylic alcohol and phenol (2a).
Scheme 5: Reaction of bromopropargylic alcohol 1a and anilines.
Scheme 6: Control experiments.
Scheme 7: A plausible mechanism for the formation of phenoxyhydroxyketone 4.
Scheme 8: A plausible mechanism for the formation of diphenoxyketone 5.
Scheme 9: Examples of representative preparation of phenoxyketones 4.
Scheme 10: α-Ketol rearrangement of phenoxyketones 4a and 4f.