4 article(s) from Wang, Qian
Graphical Abstract
Figure 1: The five distinct FC-type DTSs and the corresponding products.
Figure 2: Bioinformatics analysis of the tad cluster. A) Phylogenetic tree of TadA and representative fungal ...
Figure 3: HPLC–MS analysis of mycelial extracts from A. oryzae NSAR1 transformants. A) The HPLC profiles moni...
Scheme 1: Biosynthesis of FC-type diterpenoids. A) The biosynthetic pathway of 1, 2 and 4. B) Cyclization mec...
Graphical Abstract
Scheme 1: Photoredox catalysis mechanism of [Ru(bpy)3]2+.
Scheme 2: Photoredox catalysis mechanism of CuI.
Scheme 3: Ligands and CuI complexes.
Scheme 4: Mechanism of CuI-based photocatalysis.
Scheme 5: Mechanisms of CuI–substrate complexes.
Scheme 6: Mechanism of CuII-base photocatalysis.
Scheme 7: Olefinic C–H functionalization and allylic alkylation.
Scheme 8: Cross-coupling of unactivated alkenes and CF3SO2Cl.
Scheme 9: Chlorosulfonylation/cyanofluoroalkylation of alkenes.
Scheme 10: Hydroamination of alkenes.
Scheme 11: Cross-coupling reaction of alkenes, alkyl halides with nucleophiles.
Scheme 12: Cross-coupling of alkenes with oxime esters.
Scheme 13: Oxo-azidation of vinyl arenes.
Scheme 14: Azidation/difunctionalization of vinyl arenes.
Scheme 15: Photoinitiated copper-catalyzed Sonogashira reaction.
Scheme 16: Alkyne functionalization reactions.
Scheme 17: Alkynylation of dihydroquinoxalin-2-ones with terminal alkynes.
Scheme 18: Decarboxylative alkynylation of redox-active esters.
Scheme 19: Aerobic oxidative C(sp)–S coupling reaction.
Scheme 20: Copper-catalyzed alkylation of carbazoles with alkyl halides.
Scheme 21: C–N coupling of organic halides with amides and aliphatic amines.
Scheme 22: Copper-catalyzed C–X (N, S, O) bond formation reactions.
Scheme 23: Arylation of C(sp2)–H bonds of azoles.
Scheme 24: C–C cross-coupling of aryl halides and heteroarenes.
Scheme 25: Benzylic or α-amino C–H functionalization.
Scheme 26: α-Amino C–H functionalization of aromatic amines.
Scheme 27: C–H functionalization of aromatic amines.
Scheme 28: α-Amino-C–H and alkyl C–H functionalization reactions.
Scheme 29: Other copper-photocatalyzed reactions.
Scheme 30: Cross-coupling of oxime esters with phenols or amines.
Scheme 31: Alkylation of heteroarene N-oxides.
Graphical Abstract
Scheme 1: Reagents and reaction conditions: (a) 4-dimethylaminopyridine (DMAP), 1-ethyl-3-(3-dimethylaminopro...
Figure 1: (a) GA-pyrene (3) and TNF (4, 1:1, molar ratio, [3] = 12 mM) in DMSO/water (3:1, v/v). The red inso...
Figure 2: Tgel of GA-pyrene (3) and TNF (4, 1:1, molar ratio) with the increasing concentration in different ...
Figure 3: Tgel of all the CT gels of GA-pyrene (3, 0.6 g/100 mL) with TNF (4) in varying ratios.
Figure 4: Scanning electron micrographs of CT xerogels (3 and 4, 1:1, molar ratio, [3] = 9 mM) in DMSO/water ...
Figure 5: Optical micrographs (20 × 20) of CT xerogels (3 and 4, 1:1, molar ratio, [3] = 9 mM) in (a) DMSO/wa...
Figure 6: CD spectra of sol in CH2Cl2, and CT gel obtained from DMF/water (3:1, v/v), DMSO/water (3:1, v/v), ...
Figure 7: (a) UV–vis, (b) transmittance at 700 nm, (c) fluorescence intensity at 498 nm (excitation: 365 nm) ...
Figure 8: Variable temperature 1H NMR (400 MHz) of CT gel (3 and 4, 1:1, molar ratio) in DMSO/D2O (3:1, v/v)....
Graphical Abstract
Scheme 1: Biphenyl-capped (5), naphthalene-capped (6), and naphthalene-appended γ-cyclodextrin (7).
Figure 1: UV–vis spectral changes of 0.2 mM AC upon increasing the concentration of 7 in pH 9 phosphate buffe...
Figure 2: Circular dichroism spectra of 7 (0.2 mM) in the presence of 0, 0.0083, 0.025, 0.048, 0.071, 0.093, ...
Figure 3: Circular dichroism spectra of 6 (0.2 mM) in the presence of 0, 0.0083, 0.025, 0.048, 0.071, 0.093, ...
Figure 4: UV–vis spectra of AC (black dashed line) and 7 (red dashed line) and fluorescence spectra of 7 (0.0...