Search for "molecular electronics" in Full Text gives 33 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2013, 9, 215–222, doi:10.3762/bjoc.9.25
Graphical Abstract
Figure 1: Schematic depiction of (a) a rigid phenylene-ethynylene polymer core with ligands attached via flex...
Figure 2: Generic structure of spacers containing an even (n = 1, 3) and an odd (n = 2, 4) number of units.
Figure 3: Synthetic strategy for rigid spacers with an even number of units.
Figure 4: Synthetic strategy for rigid spacers with an odd number of units.
Scheme 1: Synthesis of building blocks; (a) from 1, Pd(PPh3)4 , CuI, PPh3, TEA, toluene, 50 °C, 5 h, 31% for 3...
Scheme 2: Synthesis of a two-unit spacer. (a) PdCl2(PPh3)2, CuI, TEA, THF, microwave, 60 °C, 20 min, 81% for 7...
Scheme 3: Synthesis of three-unit spacers. (a) from 4: TBAF, THF, 62%; from 6 and 14: K2CO3, MeOH/CH2Cl2, 45 ...
Scheme 4: Synthesis of a four-unit spacer. (a) PdCl2(PPh3)2, CuI, TEA, THF, microwave, 60 °C, 20 min, 73%; (b...
Scheme 5: Synthesis of a five-unit spacer. (a) PdCl2(PPh3)2, CuI, TEA, THF, microwave, 60 °C, 20 min, 70%; (b...
Scheme 6: Synthesis of divalent ligand 22. (a) CuSO4·5H2O, Na-ascorbate, DMF/H2O, microwave, 80 °C, 40 min, 8...
Scheme 7: Synthesis of divalent ligand 24. (a) 13, TBAF in THF, rt, 1 h, then H2O, TBTA, CuSO4·5H2O, Na-ascor...
Figure 5: Previously tested compounds.
Beilstein J. Org. Chem. 2012, 8, 1018–1026, doi:10.3762/bjoc.8.114
Graphical Abstract
Scheme 1: Photochromism of diarylethenes 1–3.
Scheme 2: Synthetic route for diarylethenes 1–3.
Figure 1: Absorption spectral changes of diarylethenes 1–3 by photoirradiation with UV–vis in hexane (2.0 × 10...
Figure 2: The color changes of diarylethene 1–3 by photoirradiation at room temperature: (A) in hexane; (B) i...
Figure 3: The photoconversion ratios of diarylethenes 1–3 in the photostationary state as analyzed by HPLC.
Figure 4: Fatigue resistance of diarylethenes 1–3 in hexane in air atmosphere at room temperature: (A) in hex...
Figure 5: Fluorescence emission spectra of diarylethenes 1–3 at room temperature: (A) in hexane solution (2.0...
Figure 6: Emission intensity changes of diarylethene 1 upon irradiation with UV light at room temperature: (A...
Figure 7: Cyclic voltammetry of diarylethenes 1–3 in acetonitrile with a scanning rate of 50 mV/s.
Beilstein J. Org. Chem. 2012, 8, 958–966, doi:10.3762/bjoc.8.108
Graphical Abstract
Scheme 1: Dihydroazulene (DHA)/vinylheptafulvene (VHF) photo-/thermoswitch.
Figure 1: Numbering of azulene.
Scheme 2: Bromination–elimination protocol for functionalization of DHA [3,5-8]. HMDS = hexamethyldisilazide.
Scheme 3: Bromination of VHF [11]. NBS = N-bromosuccinimide.
Scheme 4: Radical and ionic brominations of VHF.
Figure 2: 1H,1H COSY NMR spectrum of DHA 8 (CDCl3, 500 MHz). For assignments of DHA signals, see numbering in ...
Figure 3: Molecular structures (with displacements ellipsoids at 50% probability for non-H atoms) of (a) DHA 8...
Figure 4: 1H NMR spectra (C6D6, 300 MHz) of (a) DHA 1; (b) VHF 2; (c–e) VHF 2 after treatment with 2 molar eq...
Figure 5: Compound 9 was selectively brominated to furnish the product 10.
Scheme 5: Synthesis of 3,7-dibromo-DHA.
Scheme 6: Synthesis of a 3,7-dibromoazulene.
Scheme 7: Regioselective Sonogashira and Suzuki couplings. RuPhos = 2-dicyclohexylphosphino-2',6'-diisopropox...
Scheme 8: Slow conversions to azulenes in the solid state.
Figure 6: Absorption spectra of DHA 8 and VHF 7 in cyclohexane. The broken curve shows the absorption spectru...
Beilstein J. Org. Chem. 2012, 8, 349–370, doi:10.3762/bjoc.8.39
Graphical Abstract
Figure 1: Three of the common molecular and supramolecular structural motifs in liquid crystal chemistry: rod...
Figure 2: Schematic representation of the solvent-mediated ligand exchange process, illustrated for the parti...
Figure 3: Chemical structures and LC properties of the rodlike ligands discussed in the text.
Figure 4: Schematic representation of pseudospherical Au NPs coated exclusively with mesogenic rodlike ligand...
Figure 5: TEM images of Au@612 (a) before and (b) after thermal treatment. Below: Proposed model of the nanop...
Figure 6: Ligand deformation at the surface of the gold NPs giving rigid "poles" and a soft equator. Such def...
Figure 7: A simplified illustration of the local rectangular arrangement of nanoparticles in a condensed mixe...
Figure 8: Chemical structures and LC properties of the rodlike ligands discussed in the text.
Figure 9: Schematic drawing of the arrangement of nanoparticles in the columnar phase, as viewed from above (...
Figure 10: The proposed structural models resulting from ligand migration at the NP surface: (a) Smectic (Au@C6...
Figure 11: Reversible migration of the surface ligands as a function of temperature (and phase). Only the blue...
Figure 12: Photochromic and photo-mesogenic rodlike ligands.
Figure 13: Chemical structures and LC properties of side-on mesogens used to coat NPs.
Figure 14: Left: POM image of ligand 12. Right: POM image of Schlieren texture of the hybrid Au@12. Reprinted ...
Figure 15: Threaded nematic texture of Au@ C12/13 as observed by POM at RT. Scale bar = 10 μm. Reprinted with ...
Figure 16: Schematic representation of the gold NP columnar structures. (a) Rhombohedral phase in Au@C12/13 an...
Figure 17:
TEM images of thin films of the phase of Au@C12/13 recorded with the beam (a) parallel to the
pla...
Figure 18: Chemical structures and mesogenic properties of bent-core proto-mesogenic ligands used to coat NPs.
Figure 19: Chemical structures and mesogenic properties of dendritic and proto-dendritic ligands used to coat ...
Figure 20: TEM image showing the arrangement of the hybrid NPs Au@16 into regularly spaced rows. Reprinted wit...
Figure 21: Chemical structures and mesogenic properties of dendritic and proto-dendritic ligands used to coat ...
Figure 22:
Top left: Body-centred (I) cubic lattice of symmetry composed of truncated octahedrons. Top right:...
Figure 23: Model proposed for the organisation of the hybrids within the quasi-nematic mesophase. Reprinted wi...
Figure 24: Mesogenic dendrons used to coat Au NPs.
Figure 25: Chemical structures of the discotic mesogenic ligands used to coat NPs.
Figure 26: TEM images of Au@235,12 prepared from aged solutions stood for 10 days in solutions of (a) 1:1 MeOH...
Figure 27: Some of the various hybrid geometries and packing motifs possible upon ligand grafting to the surfa...
Beilstein J. Org. Chem. 2010, 6, No. 72, doi:10.3762/bjoc.6.72
Graphical Abstract
Scheme 1: Synthesis of (oligo)phenothiazinyl thioacetates 2 and 4.
Figure 1: Normalized absorption (solid line) and emission (dashed line) spectra of thioacetate 2d (recorded i...
Figure 2: Cyclic voltammogram of thioacetate 2d (recorded in CH2Cl2, T = 293 K; 0.1 M electrolyte [Bu4N][PF6]...
Scheme 2: Preparation of SAMs from (oligo)phenothiazinyl thioacetates 2 or 4 on a Au{111}-coated silicon wafe...
Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32
Graphical Abstract
Figure 1: Biologically important amines and quaternary ammonium salts: histamine (1), dopamine (2) and acetyl...
Figure 2: Crown ether 18-crown-6.
Figure 3: Conformations of 18-crown-6 (4) in solvents of different polarity.
Figure 4: Binding topologies of the ammonium ion depending on the crown ring size.
Figure 5: A “pseudorotaxane” structure consisting of 24-crown-8 and a secondary ammonium ion (5); R = Ph.
Figure 6: Typical examples of azacrown ethers, cryptands and related aza macrocycles.
Figure 7: Binding of ammonium to azacrown ethers and cryptands [111-113].
Figure 8: A 19-crown-6-ether with decalino blocking groups (11) and a thiazole-dibenzo-18-crown-6-ether (12).
Figure 9: 1,3-Bis(6-oxopyridazin-1-yl)propane derivatives 13 and 14 by Campayo et al.
Figure 10: Fluorescent azacrown-PET-sensors based on coumarin.
Figure 11: Two different pyridino-cryptands (17 and 18) compared to a pyridino-crown (19); chiral ammonium ion...
Figure 12: Pyridino-18-crown-6 ligand (21), a similar acridino-18-crown-6 ligand (22) and a structurally relat...
Figure 13: Ciral pyridine-azacrown ether receptors 24.
Figure 14: Chiral 15-crown-5 receptors 26 and an analogue 18-crown-6 ligand 27 derived from amino alcohols.
Figure 15: C2-symmetric chiral 18-crown-6 amino alcohol derivatives 28 and related macrocycles.
Figure 16: Macrocycles with diamide-diester groups (30).
Figure 17: C2-symmetric chiral aza-18-crown-6 ethers (31) with phenethylamine residues.
Figure 18: Chiral C-pivot p-methoxy-phenoxy-lariat ethers.
Figure 19: Chiral lariat crown ether 34.
Figure 20: Sucrose-based chiral crown ether receptors 36.
Figure 21: Permethylated fructooligosaccharide 37 showing induced-fit chiral recognition.
Figure 22: Biphenanthryl-18-crown-6 derivative 38.
Figure 23: Chiral lariat crown ethers derived from binol by Fuji et al.
Figure 24: Chiral phenolic crown ether 41 with “aryl chiral barriers” and guest amines.
Figure 25: Chiral bis-crown receptor 43 with a meso-ternaphthalene backbone.
Figure 26: Chromogenic pH-dependent bis-crown chemosensor 44 for diamines.
Figure 27: Triamine guests for binding to receptor 44.
Figure 28: Chiral bis-crown phenolphthalein chemosensors 46.
Figure 29: Crown ether amino acid 47.
Figure 30: Luminescent receptor 48 for bis-alkylammonium guests.
Figure 31: Luminescent CEAA (49a), a bis-CEAA receptor for amino acids (49b) and the structure of lysine bindi...
Figure 32: Luminescent CEAA tripeptide for binding small peptides.
Figure 33: Bis crown ether 51a self assembles co-operatively with C60-ammonium ion 51b.
Figure 34: Triptycene-based macrotricyclic dibenzo-[24]-crown-8 ether host 52 and guests.
Figure 35: Copper imido diacetic acid azacrown receptor 53a and the suggested His-Lys binding motif; a copper ...
Figure 36: Urea (54) and thiourea (55) benzo crown receptor for transport and extraction of amino acids.
Figure 37: Crown pyryliums ion receptors 56 for amino acids.
Figure 38: Ditopic sulfonamide bridged crown ether receptor 57.
Figure 39: Luminescent peptide receptor 58.
Figure 40: Luminescent receptor 59 for the detection of D-glucosamine hydrochloride in water/ethanol and lumin...
Figure 41: Guanidinium azacrown receptor 61 for simple amino acids and ditopic receptor 62 with crown ether an...
Figure 42: Chiral bicyclic guanidinium azacrown receptor 63 and similar receptor 64 for the enantioselective t...
Figure 43: Receptors for zwitterionic species based on luminescent CEAAs.
Figure 44: 1,10-Azacrown ethers with sugar podand arms and the anticancer agent busulfan.
Figure 45: Benzo-18-crown-6 modified β-cyclodextrin 69 and β-cyclodextrin functionalized with diaza-18-crown-6...
Figure 46: Receptors for colorimetric detection of primary and secondary ammonium ions.
Figure 47: Porphyrine-crown-receptors 72.
Figure 48: Porphyrin-crown ether conjugate 73 and fullerene-ammonium ion guest 74.
Figure 49: Calix[4]arene (75a), homooxocalix[4]arene (75b) and resorcin[4]arene (75c) compared (R = H, alkyl c...
Figure 50: Calix[4]arene and ammonium ion guest (R = H, alkyl, OAcyl etc.), possible binding sites; A: co-ordi...
Figure 51: Typical guests for studies with calixarenes and related molecules.
Figure 52: Lower rim modified p-tert-butylcalix[5]arenes 82.
Figure 53: The first example of a water soluble calixarene.
Figure 54: Sulfonated water soluble calix[n]arenes that bind ammonium ions.
Figure 55: Displacement assay for acetylcholine (3) with a sulfonato-calix[6]arene (84b).
Figure 56: Amino acid inclusion in p-sulfonatocalix[4]arene (84a).
Figure 57: Calixarene receptor family 86 with upper and lower rim functionalization.
Figure 58: Calix[6]arenes 87 with one carboxylic acid functionality.
Figure 59: Sulfonated calix[n]arenes with mono-substitution at the lower rim systematically studied on their r...
Figure 60: Cyclotetrachromotropylene host (91) and its binding to lysine (81c).
Figure 61: Calixarenes 92 and 93 with phosphonic acids groups.
Figure 62: Calix[4]arene tetraphosphonic acid (94a) and a double bridged analogue (94b).
Figure 63: Calix[4]arene tetraphosphonic acid ester (92c) for surface recognition experiments.
Figure 64: Calixarene receptors 95 with α-aminophosphonate groups.
Figure 65: A bridged homocalix[3]arene 95 and a distally bridged homocalix[4]crown 96.
Figure 66: Homocalix[3]arene ammonium ion receptor 97a and the Reichardt’s dye (97b) for colorimetric assays.
Figure 67: Chromogenic diazo-bridged calix[4]arene 98.
Figure 68: Calixarene receptor 99 by Huang et al.
Figure 69: Calixarenes 100 reported by Parisi et al.
Figure 70: Guest molecules for inclusion in calixarenes 100: DAP × 2 HCl (101a), APA (101b) and Lys-OMe × 2 HC...
Figure 71: Different N-linked peptido-calixarenes open and with glycol chain bridges.
Figure 72: (S)-1,1′-Bi-2-naphthol calixarene derivative 104 published by Kubo et al.
Figure 73: A chiral ammonium-ion receptor 105 based on the calix[4]arene skeleton.
Figure 74: R-/S-phenylalaninol functionalized calix[6]arenes 106a and 106b.
Figure 75: Capped homocalix[3]arene ammonium ion receptor 107.
Figure 76: Two C3 symmetric capped calix[6]arenes 108 and 109.
Figure 77: Phosphorous-containing rigidified calix[6]arene 110.
Figure 78: Calix[6]azacryptand 111.
Figure 79: Further substituted calix[6]azacryptands 112.
Figure 80: Resorcin[4]arene (75c) and the cavitands (113).
Figure 81: Tetrasulfonatomethylcalix[4]resorcinarene (114).
Figure 82: Resorcin[4]arenes (115a/b) and pyrogallo[4]arenes (115c, 116).
Figure 83: Displacement assay for acetylcholine (3) with tetracyanoresorcin[4]arene (117).
Figure 84: Tetramethoxy resorcinarene mono-crown-5 (118).
Figure 85: Components of a resorcinarene based displacement assay for ammonium ions.
Figure 86: Chiral basket resorcin[4]arenas 121.
Figure 87: Resorcinarenes with deeper cavitand structure (122).
Figure 88: Resorcinarene with partially open deeper cavitand structure (123).
Figure 89: Water-stabilized deep cavitands with partially structure (124, 125).
Figure 90: Charged cavitands 126 for tetralkylammonium ions.
Figure 91: Ditopic calix[4]arene receptor 127 capped with glycol chains.
Figure 92: A calix[5]arene dimer for diammonium salt recognition.
Figure 93: Calixarene parts 92c and 129 for the formation molecular capsules.
Figure 94: Encapsulation of a quaternary ammonium cation by two resorcin[4]arene molecules (NMe4+@[75c]2 × Cl−...
Figure 95: Encapsulation of a quaternary ammonium cation by six resorcin[4]arene molecules (NMe3D+@[130]6 × Cl−...
Figure 96: Structure and schematic of cucurbit[6]uril (CB[6], 131a).
Figure 97: Cyclohexanocucurbit[6]uril (CB′[6], 132) and the guest molecule spermine (133).
Figure 98: α,α,δ,δ-Tetramethylcucurbit[6]uril (134).
Figure 99: Structure of the cucurbituril-phthalhydrazide analogue 135.
Figure 100: Organic cavities for the displacement assay for amine differentiation.
Figure 101: Displacement assay methodology for diammonium- and related guests involving cucurbiturils and some ...
Figure 102: Nor-seco-Cucurbituril (±)-bis-ns-CB[6] (140) and guest molecules.
Figure 103: The cucurbit[6]uril based complexes 141 for chiral discrimination.
Figure 104: Cucurbit[7]uril (131c) and its ferrocene guests (142) opposed.
Figure 105: Cucurbit[7]uril (131c) guest inclusion and representative guests.
Figure 106: Cucurbit[7]uril (131c) binding to succinylcholine (145) and different bis-ammonium and bis-phosphon...
Figure 107: Paraquat-cucurbit[8]uril complex 149.
Figure 108: Gluconuril-based ammonium receptors 150.
Figure 109: Examples of clefts (151a), tweezers (151b, 151c, 151d) and clips (151e).
Figure 110: Kemp’s triacid (152a), on example of Rebek’s receptors (152b) and guests.
Figure 111: Amino acid receptor (154) by Rebek et al.
Figure 112: Hexagonal lattice designed hosts by Bell et al.
Figure 113: Bell’s amidinium receptor (156) and the amidinium ion (157).
Figure 114: Aromatic phosphonic acids.
Figure 115: Xylene phosphonates 159 and 160a/b for recognition of amines and amino alcohols.
Figure 116: Bisphosphonate recognition motif 161 for a colorimetric assay with alizarin complexone (163) for ca...
Figure 117: Bisphosphonate/phosphate clip 164 and bisphosphonate cleft 165.
Figure 118: N-Methylpyrazine 166a, N-methylnicotinamide iodide (166b) and NAD+ (166c).
Figure 119: Bisphosphate cavitands.
Figure 120: Bisphosphonate 167 of Schrader and Finocchiaro.
Figure 121: Tweezer 168 for noradrenaline (80b).
Figure 122: Different tripods and heparin (170).
Figure 123: Squaramide based receptors 172.
Figure 124: Cage like NH4+ receptor 173 of Kim et al.
Figure 125: Ammonium receptors 174 of Chin et al.
Figure 126: 2-Oxazolin-based ammonium receptors 175a–d and 176 by Ahn et al.
Figure 127: Racemic guest molecules 177.
Figure 128: Tripods based on a imidazole containing macrocycle (178) and the guest molecules employed in the st...
Figure 129: Ammonium ion receptor 180.
Figure 130: Tetraoxa[3.3.3.3]paracyclophanes 181 and a cyclophanic tetraester (182).
Figure 131: Peptidic bridged paraquat-cyclophane.
Figure 132: Shape-selective noradrenaline host.
Figure 133: Receptor 185 for binding of noradrenaline on surface layers from Schrader et al.
Figure 134: Tetraphosphonate receptor for binding of noradrenaline.
Figure 135: Tetraphosphonate 187 of Schrader and Finocchiaro.
Figure 136: Zinc-Porphyrin ammonium-ion receptors 188 and 189 of Mizutani et al.
Figure 137: Zinc porphyrin receptor 190.
Figure 138: Zinc porphyrin receptors 191 capable of amino acid binding.
Figure 139: Zinc-porphyrins with amino acid side chains for stereoinduction.
Figure 140: Bis-zinc-bis-porphyrin based on Tröger’s base 193.
Figure 141: BINAP-zinc-prophyrin derivative 194 and it’s guests.
Figure 142: Bisaryl-linked-zinc-porphyrin receptors.
Figure 143: Bis-zinc-porphyrin 199 for diamine recognition and guests.
Figure 144: Bis-zinc-porphyrin crown ether 201.
Figure 145: Bis-zinc-porphyrin 202 for stereodiscrimination (L = large substituent; S = small substituent).
Figure 146: Bis-zinc-porphyrin[3]rotaxane and its copper complex and guests.
Figure 147: Dien-bipyridyl ligand 206 for co-ordination of two metal atoms.
Figure 148: The ligand and corresponding tetradentate co-complex 207 serving as enantioselective receptor for a...
Figure 149: Bis(oxazoline)–copper(II) complex 208 for the recognition of amino acids in aqueous solution.
Figure 150: Zinc-salen-complexes 209 for the recognition tertiary amines.
Figure 151: Bis(oxazoline)–copper(II) 211 for the recognition of amino acids in aqueous solution.
Figure 152: Zn(II)-complex of a C2 terpyridine crown ether.
Figure 153: Displacement assay and receptor for aspartate over glutamate.
Figure 154: Chiral complex 214 for a colorimetric displacement assay for amino acids.
Figure 155: Metal complex receptor 215 with tripeptide side arms.
Figure 156: A sandwich complex 216 and its displaceable dye 217.
Figure 157: Lanthanide complexes 218–220 for amino acid recognition.
Figure 158: Nonactin (221), valinomycin (222) and vancomycin (223).
Figure 159: Monesin (224a) and a chiral analogue for enantiodiscrimination of ammonium guests (224b).
Figure 160: Chiral podands (226) compared to pentaglyme-dimethylether (225) and 18-crown-6 (4).
Figure 161: Lasalocid A (228).
Figure 162: Lasalocid derivatives (230) of Sessler et al.
Figure 163: The Coporphyrin I tetraanion (231).
Figure 164: Linear and cyclic peptides for ammonium ion recognition.
Figure 165: Cyclic and bicyclic depsipeptides for ammonium ion recognition.
Figure 166: α-Cyclodextrin (136a) and novocaine (236).
Figure 167: Helical diol receptor 237 by Reetz and Sostmann.
Figure 168: Ammonium binding spherand by Cram et al. (238a) and the cyclic[6]metaphenylacetylene 238b in compar...
Figure 169: Receptor for peptide backbone and ammonium binding (239).
Figure 170: Anion sensor principle with 3-hydroxy-2-naphthanilide of Jiang et al.
Figure 171: 7-bromo-3-hydroxy-N-(2-hydroxyphenyl)naphthalene 2-carboxamide (241) and its amine binding.
Figure 172: Naturally occurring catechins with affinity to quaternary ammonium ions.
Figure 173: Spiropyran (244) and merocyanine form (244a) of the amino acid receptors of Fuji et al.
Figure 174: Coumarin aldehyde (245) and its iminium species with amino acid bound (245a) by Glass et al.
Figure 175: Coumarin aldehyde appended with boronic acid.
Figure 176: Quinolone aldehyde dimers by Glass et al.
Figure 177: Chromogenic ammonium ion receptors with trifluoroacetophenone recognition motifs.
Figure 178: Chromogenic ammonium ion receptor with trifluoroacetophenone recognition motif bound on different m...
Beilstein J. Org. Chem. 2009, 5, No. 52, doi:10.3762/bjoc.5.52
Graphical Abstract
Scheme 1: Synthesis of banana bridged discotic dimer. Reagents and conditions; (i) Br(CH2)12Br, Cs2CO3, MEK, ...
Scheme 2: Synthesis of banana-discotic dimers.
Beilstein J. Org. Chem. 2009, 5, No. 51, doi:10.3762/bjoc.5.51
Graphical Abstract
Scheme 1: 1-[4-(dodecyloxy)phenyl]-3-methyl-1H-imidazol-3-ium mesogenic salts.
Scheme 2: Synthesis of the imidazole A. Reaction conditions: (i) aryl iodide (1.37 mmol), imidazole (1.69 mmo...
Scheme 3: Synthesis of methyl imidazolium 1a. Reaction conditions: (i) MeI in sealed tube, 54 h at RT.
Figure 1: ORTEP view of compound 1a with partial labelling. The closest molecules are represented (with lower...
Figure 2: Packing diagram of compound 1a in projection in the (b,c) lattice plane. Large spheres represent th...
Scheme 4: Anion metathesis in water/CH2Cl2 as solvent.
Figure 3: Spectra of absorption (red line) and emission (blue line) of 1a.
Figure 4: TGA measurements of the compounds 1a–e (rate 10 °C·min−1, in air).
Figure 5: Phase transition temperatures of compounds 1a–e.
Figure 6: Powder X-ray diffraction pattern of compound 1a in the liquid crystal state (T = 120 °C).
Figure 7: The melting process involves the ruffling of the ionic sublayer. In the smectic phase, the ruffling...
Figure 8: Comparison of the molecular area S and of the ionic sublayer thickness dc (including mesogenic segm...
Figure 9: Variation with the counter-ion of the molecular area S and of the ionic sublayer thickness dc (incl...
Figure 10: Cyclic voltammogram of 1a in CH3CN (0.1 M NBu4PF6): (i), (ii) cathodic and anodic range of the volt...