Search results

Search for "asymmetric" in Full Text gives 901 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Factors influencing the performance of organocatalysts immobilised on solid supports: A review

  • Zsuzsanna Fehér,
  • Dóra Richter,
  • Gyula Dargó and
  • József Kupai

Beilstein J. Org. Chem. 2024, 20, 2129–2142, doi:10.3762/bjoc.20.183

Graphical Abstract
  • applications in organic chemistry. Keywords: asymmetric synthesis; catalyst recycling; heterogenisation; organocatalysis; solid support; Introduction Organocatalysts are small molecules that do not contain a metal atom in the reaction centre and are able to increase the speed of reactions. They have proven
  • MacMillan were awarded the Nobel Prize in 2021 for the development of asymmetric organocatalysis [6]. To date, industrial companies have used a number of asymmetric organocatalytic processes to synthesise pharmaceuticals and fine chemicals on large scales [7]. Catalyst recycling is key from both an economic
  • , giving easily recyclable asymmetric catalysts. The asymmetric sites can be different types, commonly they are binaphthyl-, biphenyl- [91][92][93] and proline-based [94][95]. COFs are a type of crystalline porous material, consisting of covalently linked organic ligands [96][97]. Since the framework only
PDF
Album
Review
Published 26 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • feature of the method is the regioselectivity with asymmetric diketones. In addition to β-ketoesters, acetylacetone can be used in the concept. The same research group employed ethyl 4,4,4-trifluoroacetoacetate as a substrate in this method. The pyrazoline oxidation proved to be critical, and the addition
PDF
Album
Review
Published 16 Aug 2024

Diastereoselective synthesis of highly substituted cyclohexanones and tetrahydrochromene-4-ones via conjugate addition of curcumins to arylidenemalonates

  • Deepa Nair,
  • Abhishek Tiwari,
  • Banamali Laha and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2024, 20, 2016–2023, doi:10.3762/bjoc.20.177

Graphical Abstract
  • KOH using TBAB as a suitable phase transfer catalyst in a biphasic medium at room temperature. The scalability of the reaction has also been demonstrated. Our future efforts will involve performing an asymmetric version of this reaction using chiral phase-transfer catalysts and the results will be
PDF
Album
Supp Info
Correction
Full Research Paper
Published 15 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • -methoxymethylpyrrolidine)hydrazones could be also key intermediates for the asymmetric synthesis of α-substituted aldehydes and ketones [18][19]. Interestingly, depending on the substitution pattern, the C=N bond can feature different electronic properties [20]. For instance, various hydrazones have been employed for the
  • asymmetric preparation of chiral amines through the addition of nucleophilic partners [21][22] while the azaenamine character of some aldehyde-derived hydrazones has been demonstrated in the coupling with suitable electrophiles such as Michael acceptors [23][24]. Last but not least, the C=N bond of
PDF
Album
Review
Published 14 Aug 2024

Allostreptopyrroles A–E, β-alkylpyrrole derivatives from an actinomycete Allostreptomyces sp. RD068384

  • Marwa Elsbaey,
  • Naoya Oku,
  • Mohamed S. A. Abdel-Mottaleb and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2024, 20, 1981–1987, doi:10.3762/bjoc.20.174

Graphical Abstract
  • (porphyrins) including heme, chlorophyll, and vitamin B12 [1][2] (Figure S54 in Supporting Information File 1). Porphobilinogen, the fundamental biological precursor of tetrapyrroles, is biosynthesized via asymmetric condensation of two δ-aminolevulinic acid molecules [2][3]. From another aspect
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2024

Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications

  • Matteo Gasparetto,
  • Balázs Fődi and
  • Gellért Sipos

Beilstein J. Org. Chem. 2024, 20, 1922–1932, doi:10.3762/bjoc.20.168

Graphical Abstract
  • range of less widely applicable strategies have been developed as well [17][18][19][20][21][22]. The above-mentioned methods focus on the synthesis of α-alkyl-amino acids. Moving to α-aryl-amino acids, the Clayden group published an excellent asymmetric α-arylation method to access quaternary amino
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Chiral bifunctional sulfide-catalyzed enantioselective bromolactonizations of α- and β-substituted 5-hexenoic acids

  • Sao Sumida,
  • Ken Okuno,
  • Taiki Mori,
  • Yasuaki Furuya and
  • Seiji Shirakawa

Beilstein J. Org. Chem. 2024, 20, 1794–1799, doi:10.3762/bjoc.20.158

Graphical Abstract
  • without substituents on the carbon–carbon double bond have remained a formidable challenge. To address this limitation, we report herein the asymmetric bromolactonization of 5-hexenoic acid derivatives catalyzed by a BINOL-derived chiral bifunctional sulfide. Keywords: asymmetric catalysis
  • ; enantioselectivity; halogenation; lactones; organocatalysis; Introduction Catalytic asymmetric halolactonizations of alkenoic acids are powerful methods for the preparation of important chiral lactones in enantioenriched forms [1][2][3][4][5][6][7][8][9][10][11]. A wide variety of chiral catalysts have been applied
  • to asymmetric halolactonizations, especially for the synthesis of chiral γ-butyrolactones and δ-valerolactones via the reaction of 4-pentenoic acid and 5-hexenoic acid derivatives (Scheme 1). Notably, however, substituents on the carbon–carbon double bond of alkenoic acid substrates are generally
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2024

Primary amine-catalyzed enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones

  • Pooja Goyal,
  • Akhil K. Dubey,
  • Raghunath Chowdhury and
  • Amey Wadawale

Beilstein J. Org. Chem. 2024, 20, 1518–1526, doi:10.3762/bjoc.20.136

Graphical Abstract
  • structurally diverse pyrazole derivatives [4][5][6][7][10][11][12]. 4-Unsubstituted pyrazolin-5-ones are well known precursors for the construction of optically active structurally diverse pyrazoles [10][11][12]. In this context, the organocatalyzed asymmetric Michael addition of 4-unsubstituted pyrazolin-5
  • [10][11][12][13][14][15][16][17][18][19][20][21]. Among the developed organocatalyzed enantioselective 1,4-addition reactions of pyrazolin-5-ones, the catalytic asymmetric reactions of pyrazolin-5-ones with α,β-unsaturated ketones are comparatively less studied. In 2009, Zhao’s group were the first
  • organocatalyzed asymmetric Michael addition reaction of 4-monosubstituted pyrazol-5-ones to simple enones for the synthesis of pyrazolone derivatives [25]. Despite these progresses, arylidene/heteroarylideneacetones have remained untapped by 4-unsubstituted pyrazolin-5-ones under asymmetric organocatalytic or
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • addition, the recent years have seen remarkable progress in utilizing electrophilic azide-transfer reagents, i.e., hypervalent iodine-based compounds, for (asymmetric) α-azidations [16][17][18][19][20][21][22][23]. Besides these valuable approaches, which either require appropriate pre-functionalization of
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Towards an asymmetric β-selective addition of azlactones to allenoates

  • Behzad Nasiri,
  • Ghaffar Pasdar,
  • Paul Zebrowski,
  • Katharina Röser,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1504–1509, doi:10.3762/bjoc.20.134

Graphical Abstract
  • , Iran 10.3762/bjoc.20.134 Abstract We herein report the asymmetric organocatalytic addition of azlactones to allenoates. Upon using chiral quaternary ammonium salt catalysts, i.e., Maruoka’s binaphthyl-based spirocyclic ammonium salts, the addition of various azlactones to allenoates proceeds in a β
  • ; quaternary ammonium salt catalysis; Introduction The development of asymmetric synthesis routes to access non-natural amino acids has for decades been one of the most heavily investigated tasks in organic synthesis and catalysis-oriented research [1][2][3][4][5][6][7][8][9][10][11][12][13]. As a consequence
  • synthesis approaches. Our group has a longstanding focus on the development of asymmetric organocatalytic methods to access non-natural chiral α- and β-AA [14][15][16][17][18][19]. Hereby we are especially interested in utilizing simple (prochiral) starting materials and carry out stereoselective α
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2024

Challenge N- versus O-six-membered annulation: FeCl3-catalyzed synthesis of heterocyclic N,O-aminals

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Gianfranco Favi,
  • Fabio Mantellini,
  • Diego Olivieri and
  • Stefania Santeusanio

Beilstein J. Org. Chem. 2024, 20, 1412–1420, doi:10.3762/bjoc.20.123

Graphical Abstract
  • ), whose sequential acylation process by iso(thio)cyanates 3a–h gives rise to the asymmetric (thio)urea derivatives (intermediate II). The spontaneous nucleophilic attack of the (thio)amide nitrogen on the terminal methyl ester function at C-4 of the starting azo-ene system provides a regioselective
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation

  • Akanksha Chhikara,
  • Fan Wu,
  • Navdeep Kaur,
  • Prabagar Baskaran,
  • Alex M. Nguyen,
  • Zhichang Yin,
  • Anthony H. Pham and
  • Wei Li

Beilstein J. Org. Chem. 2024, 20, 1405–1411, doi:10.3762/bjoc.20.122

Graphical Abstract
  • . This strategy rendered the participation of simple and unadorned amides as bifunctional nucleophiles to achieve olefin oxyamination reactions. Time studies of these reactions further unveiled interesting mechanistic features that will be useful for our future catalysis development and asymmetric
PDF
Album
Supp Info
Letter
Published 24 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • transformation of the aryl glyoxals is outlined below (Scheme 4), which depicts the coordination of the hemiacetal B with the metal catalyst to give C, followed by hydride transfer to form the metal-coordinated Cannizzaro product D. Another intramolecular asymmetric Cannizzaro reaction was reported by Wu et al
  • alcohols 10. Excellent yields and enantioselectivities of the intramolecular Cannizzaro version were observed furnishing a wide range of alkyl and aryl mandelate esters 9 and 3 (Scheme 5). The asymmetric intramolecular Cannizzaro reaction of anhydrous phenylglyoxal (7a) with alcohols was envisaged by
  • % enantioselectivity. They employed a double asymmetric induction with (+)/(−)-menthol (12), and CuX2 bis(oxazoline) catalyst where the corresponding chiral mandelate ester 13 was obtained in 81% yield and high selectivity (90% de) (Scheme 6). The proposed mechanism of the reaction is depicted below. Hong et al
PDF
Album
Review
Published 19 Jun 2024

Bismuth(III) triflate: an economical and environmentally friendly catalyst for the Nazarov reaction

  • Manoel T. Rodrigues Jr.,
  • Aline S. B. de Oliveira,
  • Ralph C. Gomes,
  • Amanda Soares Hirata,
  • Lucas A. Zeoly,
  • Hugo Santos,
  • João Arantes,
  • Catarina Sofia Mateus Reis-Silva,
  • João Agostinho Machado-Neto,
  • Leticia Veras Costa-Lotufo and
  • Fernando Coelho

Beilstein J. Org. Chem. 2024, 20, 1167–1178, doi:10.3762/bjoc.20.99

Graphical Abstract
  • first asymmetric catalytic Nazarov reaction [32]. In recent years, several strategies were reported employing different Lewis acids, such as, AuCl3/AgSbF6, Cu(II), In(OTf)3, Ir(III), Al(III), Sc(OTf)3/LiClO4, In(OTf)3/diphenylphosphoric acid (DPP), Fe(OTf)3/(CF3)2PhB(OH)2, iodine [33][34][35][36][37][38
  • ][39][40][41][42][43], and other strategies [44][45]. Although methodologies involving catalysis by Lewis acids are very efficient, including asymmetric versions of the Nazarov reaction, the experimental protocols are quite laborious in most cases, requiring low temperature, an inert atmosphere, or the
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Structure–property relationships in dicyanopyrazinoquinoxalines and their hydrogen-bonding-capable dihydropyrazinoquinoxalinedione derivatives

  • Tural N. Akhmedov,
  • Ajeet Kumar,
  • Daken J. Starkenburg,
  • Kyle J. Chesney,
  • Khalil A. Abboud,
  • Novruz G. Akhmedov,
  • Jiangeng Xue and
  • Ronald K. Castellano

Beilstein J. Org. Chem. 2024, 20, 1037–1052, doi:10.3762/bjoc.20.92

Graphical Abstract
  • * level of theory), and corresponding molecular orbital plots for 1b–7b. Asymmetric unit of DPQD 2b with important bond lengths highlighted (a). Torsion angles of 4.33° and 5.25° are associated with the carbonyl groups and rings 1 and 3, respectively (b) and (c). Packing diagram showing the average
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Enantioselective synthesis of β-aryl-γ-lactam derivatives via Heck–Matsuda desymmetrization of N-protected 2,5-dihydro-1H-pyrroles

  • Arnaldo G. de Oliveira Jr.,
  • Martí F. Wang,
  • Rafaela C. Carmona,
  • Danilo M. Lustosa,
  • Sergei A. Gorbatov and
  • Carlos R. D. Correia

Beilstein J. Org. Chem. 2024, 20, 940–949, doi:10.3762/bjoc.20.84

Graphical Abstract
  • preclude chirality as in the transformation of a prochiral molecular entity into a chiral one [1]. It is a powerful and elegant strategy in asymmetric synthesis [2], which combined with the use of chiral ligands and transition-metal catalysts enabled many valuable transformations to increase molecular
  • upward, therefore creating an asymmetric center with absolute configuration (R), in accordance with experimental results. A rationalization for the transition state that would lead to the observed outcome is depicted in Figure 2. Conclusion The palladium-catalyzed Heck–Matsuda desymmetrization of N
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • -workers [22][23]. Recently, Jacobsen reported asymmetric Prins cyclizations with HCl solutions [24]. Hence, all the described hydrochlorinations are racemic or diastereoselective reactions. Review Polar hydrochlorination reactions To comprehend polar hydrochlorination reactions, a solid understanding of
  • of a single report concerning the catalytic asymmetric hydrochlorination of alkenes. Hence, this represents another important challenge for the future. Mayr’s nucleophilicity parameters for several alkenes. References for each compound can be consulted via the database. Hydride affinities relating to
PDF
Album
Review
Published 15 Apr 2024

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • pikromycin and the aglycones in this family, 10-deoxymethynolide (24) and norbonolide (25), using asymmetric aldol reaction, Yamaguchi esterification, and ring-closing metathesis as key steps [65][66]. Nevertheless, the inherent complexity of these natural products demands high step counts, leading to low
  • , they established a preparative-scale approach toward the pikromycins family and their aglycones in 2013 [70]. The preparation of activated pentaketides (37) using asymmetric α-alkylation and cross metathesis as key reactions reduced the step counts from 14 to 11 steps. Replacing the extender unit from
  • epoxidation with enzymatic macrocyclization in 2020 as shown in Scheme 8 [85]. According to their previous report [86], the production of fragments 61 was initiated by Evans’ asymmetric aldol and alcohol protection to generate 57. Six-step route transformations, including cross metathesis, afforded aldehyde
PDF
Album
Review
Published 04 Apr 2024

Evaluation of the enantioselectivity of new chiral ligands based on imidazolidin-4-one derivatives

  • Jan Bartáček,
  • Karel Chlumský,
  • Jan Mrkvička,
  • Lucie Paloušová,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2024, 20, 684–691, doi:10.3762/bjoc.20.62

Graphical Abstract
  • based on derivatives of imidazolidin-4-one were synthesised and characterised. The catalytic activity and enantioselectivity of their corresponding copper(II) complexes were studied in asymmetric Henry reactions. It was found that the enantioselectivity of these catalysts is overall very high and
  • also tested in asymmetric aldol reactions. Under the optimised reaction conditions, aldol products with enantioselectivities of up to 91% ee were obtained. Keywords: asymmetric aldol reaction; asymmetric Henry reaction; chiral ligands; enantioselective catalysis; imidazolidine derivatives
  • itself constitutes a stereocentre [4]. The specific pairing of a chiral ligand and a metal ion is essential for the catalytic characteristics and its effectiveness of the complex in asymmetric syntheses [1][2][3]. In recent years, our research group has synthesised a series of chiral ligands based on 2
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • secondary gold-ligand interactions [8][9][10], chiral environments [11][12][13] including those enabling secondary interactions with substrates for asymmetric catalysis [14], cooperative and bimetallic catalysis [7][15], and redox-enabling function for Au(I)/(III) cycles [16][17]. Such L-shaped ligands
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • allosteric catalytic regulation (Figure 21). Mirkin and co-workers reported the symmetric tweezers 40 based on a Rh(I) complex with a phosphine and a labile thioether site and Cr(III)–salen arms as catalytic sites for the asymmetric ring opening of cyclohexene oxide by TMSN3 [80]. The closed tweezers showed
PDF
Album
Review
Published 01 Mar 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • of alkenes remains challenging. Advances in asymmetric catalysis [2][3][4][5][6][7][8][9][10], C–N [11][12][13][14][15][16][17] and C–C functionalization [18][19] reveal opportunities, but harsh conditions and limited substrate scope present problems. Intramolecular reactions almost invariably
  • catalyzed by triflic acid and the gold π-activation pathway was questioned [26]. Nevertheless, advancements in gold-catalyzed reactions continued to be achieved. In particular, successful asymmetric methods were reported in short time after initially reported non-asymmetric methods, specifically Kojima’s
  • tropos BIPHEP-gold(I)-catalyzed hydroamination of alkenylureas in 2012 [9]. Michon [5][6][7][8][10] and Widenhoefer continued to make advancements in asymmetric intra- and intermolecular variants, and unique solvent and anion dependencies continue to be examined from a theoretical standpoint. For example
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C70 production

  • Cristina Castanyer,
  • Anna Pla-Quintana,
  • Anna Roglans,
  • Albert Artigas and
  • Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28

Graphical Abstract
  • derivatives are relatively scarce, likely owing to the challenges associated with their synthesis and the characterization of asymmetric structures. The findings of this study contribute to the ongoing efforts in the field of fullerene chemistry and provide a foundation for further exploration of
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • stereocenters [7]. In the Review paper by Kisszékelyi and Šebesta, the diverse variety of chiral metal enolates obtained by asymmetric conjugate additions of organometallic reagents and the possibilities to engage metal enolates in tandem reactions with new electrophiles are presented [8]. A Perspective from X
  • facile stereoselective tandem reaction based on the asymmetric conjugate addition of dialkylzinc reagents to unsaturated acylimidazoles, followed by trapping of the intermediate zinc enolate with carbocations [12]. A practical one-pot synthesis of fluorescent pyrazolo[3,4-b]pyridin-6-ones by reacting 5
PDF
Album
Editorial
Published 08 Feb 2024

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

  • Ekaterina V. Kolupaeva,
  • Narek A. Dzhangiryan,
  • Alexander F. Pozharskii,
  • Oleg P. Demidov and
  • Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24

Graphical Abstract
  • several minutes with a good yield (Scheme 4). The spectral data fully confirmed the purity and asymmetric structure of product 11. It should be emphasized that the isolation and purification of nitro compounds 10 and 11 is complicated by their low solubility in traditional organic solvents, sensitivity to
  • (Scheme 8). In addition to the spectral data confirming the composition and asymmetric structure of compound 16, a clear sign of the emerging acenaphthylene system is its yellow-orange color, which distinguishes the UV-active (yellow-green luminescence) acenaphthylene 16 from the light-beige UV-inactive
  • compounds 5·HBF4 and 8·HBF4 were recrystallized from acetonitrile and subjected to XRD analysis under the same conditions. Selected data obtained are shown in Table 1. As can be seen, in both protonated quinoquinoline systems, an intramolecular hydrogen bond is realized (strongly asymmetric in crystals, but
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024
Other Beilstein-Institut Open Science Activities