Search results

Search for "azidotrimethylsilane" in Full Text gives 4 result(s) in Beilstein Journal of Organic Chemistry.

One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4-tetrahydroisoquinoline

  • Jiawei Niu,
  • Yuhui Wang,
  • Shenghu Yan,
  • Yue Zhang,
  • Xiaoming Ma,
  • Qiang Zhang and
  • Wei Zhang

Beilstein J. Org. Chem. 2024, 20, 912–920, doi:10.3762/bjoc.20.81

Graphical Abstract
  • reaction for the synthesis of tetrazolyl-1,2,3,4-tetrahydroisoquinoline scaffolds 6 and 8 (Scheme 3). The first step is the Ugi-azide reaction of a 2-bromobenzoaldehyde 1, allylamine hydrochloride (2), azidotrimethylsilane (TMSN3, 3), and an isocyanide 4 affording tetrazoles 5. If ethyl isocyanoacetate is
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Electrochemical vicinal oxyazidation of α-arylvinyl acetates

  • Yi-Lun Li,
  • Zhaojiang Shi,
  • Tao Shen and
  • Ke-Yin Ye

Beilstein J. Org. Chem. 2022, 18, 1026–1031, doi:10.3762/bjoc.18.103

Graphical Abstract
  • diverse organic frameworks. Herein, we report that the electrochemical oxyfunctionalization strategy could be well applied to the synthesis of α-azidoketone using readily available α-arylvinyl acetates, and azidotrimethylsilane (Scheme 1C). Results and Discussion The constant cell potential electrolysis
  • (Ecell = 2.3 V, carbon cloth anode, and Pt cathode) of 1-phenylvinyl acetate (1) with azidotrimethylsilane was performed and the desired α-azidoketone (2) was obtained in 68% yield (Table 1, entry 1, for details of the reaction optimization see Supporting Information File 1). The cyclic voltammetry
  • ). The enol acetate A first undergoes anodic oxidation to form a radical cation intermediate B, which is then intercepted by azidotrimethylsilane to afford the benzyl radical C. Subsequently, this radical is further anodically oxidized to its oxocarbenium ion intermediate D, which finally reacts with
PDF
Album
Supp Info
Letter
Published 12 Aug 2022

Combining the Ugi-azide multicomponent reaction and rhodium(III)-catalyzed annulation for the synthesis of tetrazole-isoquinolone/pyridone hybrids

  • Gerardo M. Ojeda,
  • Prabhat Ranjan,
  • Pavel Fedoseev,
  • Lisandra Amable,
  • Upendra K. Sharma,
  • Daniel G. Rivera and
  • Erik V. Van der Eycken

Beilstein J. Org. Chem. 2019, 15, 2447–2457, doi:10.3762/bjoc.15.237

Graphical Abstract
  • equiv) components were mixed in EtOH (2.0 mL) in a sealed vial provided with a magnetic stirring bar. The reaction was heated at 100 °C under MW irradiation for 15 minutes. Then, the isocyanide (2.2 mmol, 1.1 equiv) component and azidotrimethylsilane (2.2 mmol, 1.1 equiv, 292 μL) were added into the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2019

Copper(I)-catalyzed tandem reaction: synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes

  • Muhammad Israr,
  • Changqing Ye,
  • Munira Taj Muhammad,
  • Yajun Li and
  • Hongli Bao

Beilstein J. Org. Chem. 2018, 14, 2916–2922, doi:10.3762/bjoc.14.270

Graphical Abstract
  • from alkyl diacyl peroxides, azidotrimethylsilane, and terminal alkynes is reported. The alkyl carboxylic acids is for the first time being used as the alkyl azide precursors in the form of alkyl diacyl peroxides. This method avoids the necessity to handle organic azides, as they are generated in situ
  • , making this protocol operationally simple. The Cu(I) catalyst not only participates in the alkyl diacyl peroxides decomposition to afford alkyl azides but also catalyzes the subsequent CuAAC reaction to produce the 1,2,3-triazoles. Keywords: alkyl diacyl peroxides; azidotrimethylsilane; click reaction
  • , sodium azide is a highly toxic compound and has the potential to explode. Azidotrimethylsilane (TMSN3) has been considered as a safer azide source, which actually has been successfully used in the CuAAC reaction directly [32][33][34][35], but rarely been used as an azido precursor to enrich the
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2018
Other Beilstein-Institut Open Science Activities