Search results

Search for "drimane" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Discovery and biosynthesis of bacterial drimane-type sesquiterpenoids from Streptomyces clavuligerus

  • Dongxu Zhang,
  • Wenyu Du,
  • Xingming Pan,
  • Xiaoxu Lin,
  • Fang-Ru Li,
  • Qingling Wang,
  • Qian Yang,
  • Hui-Min Xu and
  • Liao-Bin Dong

Beilstein J. Org. Chem. 2024, 20, 815–822, doi:10.3762/bjoc.20.73

Graphical Abstract
  • University, Nanjing 211198, China 10.3762/bjoc.20.73 Abstract Drimane-type sesquiterpenoids (DMTs) are characterized by a distinctive 6/6 bicyclic skeleton comprising the A and B rings. While DMTs are commonly found in fungi and plants, their presence in bacteria has not been reported. Moreover, the
  • analogs. This discovery not only broadens the known chemical diversity of DMTs from bacteria, but also provides new insights into DMT biosynthesis in bacteria. Keywords: bacterial terpenoid; cytochrome P450s; drimane-type sesquiterpenoid; Streptomyces clavuligerus; terpenoid biosynthesis; Introduction
  • these, drimane-type sesquiterpenoids (DMTs) are distinct due to their chemical structures, which feature a decahydronaphthalene core adorned with methyl groups, mirroring the A/B rings found in labdane-derived diterpenoids [5][6] (Figure 1a). DMTs exhibit significant biological activities, such as those
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • , comprising one of the most concise methods to attain this class of compounds, highlighting the power of merged biocatalytic and radical tactics [32]. (+)-Yahazunol (61) and related meroterpenoids (Li 2018) [33]: In 2018, Li’s group reported a divergent plan for the synthesis of drimane-type hydroquinone
  • chemoenzymatic and radical synthesis (part II, Renata). Divergent synthesis of drimane-type hydroquinone meroterpenoids (Li). Divergent synthesis of natural products isolated from Dysidea avara (Lu). Divergent synthesis of kaurene-type terpenoids (Lei). Divergent synthesis of 6-oxabicyclo[3.2.1]octane
PDF
Album
Review
Published 02 Jan 2023

Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis

  • Heather J. Lacey,
  • Cameron L. M. Gilchrist,
  • Andrew Crombie,
  • John A. Kalaitzis,
  • Daniel Vuong,
  • Peter J. Rutledge,
  • Peter Turner,
  • John I. Pitt,
  • Ernest Lacey,
  • Yit-Heng Chooi and
  • Andrew M. Piggott

Beilstein J. Org. Chem. 2019, 15, 2631–2643, doi:10.3762/bjoc.15.256

Graphical Abstract
  • identification of the nanangenines – a family of seven new and three previously reported drimane sesquiterpenoids. The structures of the nanangenines were elucidated by detailed spectroscopic analysis supported by single crystal X-ray diffraction studies. The compounds were assayed for in vitro activity against
  • : Aspergillus; biosynthesis; drimane; secondary metabolites; sesquiterpenoid; terpenes; Introduction The fungal genus Aspergillus is well recognised as a source of structurally diverse terpenoids comprising monoterpenoids [1], sesquiterpenoids [2][3][4][5], diterpenoids [6], sesterterpenoids [7][8][9
  • [21], A. ochraceus [22], A. pseudodeflectus [17], A. carneus [23] and Aspergillus sp. strain IBWF002-96 [4][5] are biosynthetic sources of the drimane sesquiterpenoids. Drimane sesquiterpenoids, which are derived from a parent C15 pentamethyl-trans-decalin skeleton, are known to occur in plants
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2019

SF002-96-1, a new drimane sesquiterpene lactone from an Aspergillus species, inhibits survivin expression

  • Silke Felix,
  • Louis P. Sandjo,
  • Till Opatz and
  • Gerhard Erkel

Beilstein J. Org. Chem. 2013, 9, 2866–2876, doi:10.3762/bjoc.9.323

Graphical Abstract
  • production of inhibitors of survivin promoter activity, a new drimane sesquiterpene lactone, SF002-96-1, was isolated from fermentations of an Aspergillus species. The compound inhibited survivin promoter activity in transiently transfected Colo 320 cells in a dose dependent manner with IC50 values of 3.42
  • attractive target for new anticancer therapeutics [13]. In a search for new inhibitors of survivin expression from natural sources, we found that cultures of Aspergillus sp. strain IBWF002-96 produced a new drimane sesquiterpene lactone, SF002-96-1, with inhibitory activity on survivin promoter activity in
  • methylene protons at δ 4.23 and 4.48 and the carbons at δ 44.6, 77.0, 133.8, and 169.8 suggested SF002-96-1 to be a drimane sesquiterpene (Figure 1). The proton signals of the methyl group (δ 0.87), four methylene groups (δ 1.28, 1.30, 1.59 and 2.32) and a carbonyl group (δ 173.5) constituted an n-hexanoyl
PDF
Album
Supp Info
Full Research Paper
Published 13 Dec 2013

Recyclable fluorous cinchona alkaloid ester as a chiral promoter for asymmetric fluorination of β-ketoesters

  • Wen-Bin Yi,
  • Xin Huang,
  • Zijuan Zhang,
  • Dian-Rong Zhu,
  • Chun Cai and
  • Wei Zhang

Beilstein J. Org. Chem. 2012, 8, 1233–1240, doi:10.3762/bjoc.8.138

Graphical Abstract
  • organofluorine chemistry plays an important role in the life sciences [3][4]. A fluorine atom has been introduced to the α-position of some biologically interesting β-ketoesters, such as erythromycin and sesquiterpenic drimane (Figure 1) [5][6]. The achiral fluorination of β-ketoesters can be achieved by
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2012
Other Beilstein-Institut Open Science Activities