Search results

Search for "transition-metal oxide" in Full Text gives 27 result(s) in Beilstein Journal of Nanotechnology.

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • fabricating WOx-based optoelectronic devices, including photovoltaic cells. Keywords: annealing; glancing angle sputter deposition; heterojunction; tungsten oxide; work function; Introduction Tungsten oxide (WOx; x ≤ 3) is a popular transition-metal oxide for various optoelectronic devices because of its
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. Transition metal chalcogenides are another class of photothermal nanomaterials that exhibit strong NIR absorption, good photostability, and low toxicity. The architectonics of these nanomaterials also plays an important role regarding the PCE. Among the different types of transition metal oxide nanoparticles
PDF
Album
Review
Published 04 Oct 2023

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • current densities between 50 and 5000 mA·g−1. Keywords: anode material; cobalt oxide; lithium-ion battery; solution combustion synthesis; transition metal oxide; Introduction Recently, a considerable research effort regarding new anode materials has been made because the traditional carbonaceous anodes
  • −1 shows that the values of specific capacity consecutively rise over the theoretical capacity value and are maintained at 1060 mAh·g−1 after 100th cycle. This phenomenon is well known for different transition metal oxide electrodes and is usually ascribed to the reversible formation/dissolution of a
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • of electronic devices appealing for the implementation in conceptually new data storage cells [1]. Specifically, resistive memories [2] based on the change of the electrical properties of a transition metal oxide thin layer, integrated in a simple electrode setup as a function of an externally
  • W3O8 should also lead to an increased local interaction with the transition metal oxide layer, which might play a role in the new assembly arrangement. We have observed stronger interaction of both clusters with a simpler TiO2 surface, in which O atoms from the cluster interact with Ti atoms of the
PDF
Album
Full Research Paper
Published 16 Feb 2021

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • Matangi Sricharan Bikesh Gupta Sreejesh Moolayadukkam H. S. S. Ramakrishna Matte Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560013, India 10.3762/bjnano.11.52 Abstract MoO3 is a versatile two-dimensional transition metal oxide having applications
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • tasks of information processing. As an example, large crossbar arrays of transition-metal-oxide-based filamentary RRAM devices operated in the metallic conductance regime of 102–104Ω have been successfully utilized recently to perform various linear operations relying on hardware-implemented vector
PDF
Album
Full Research Paper
Published 08 Jan 2020

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • the Ti2+ to Ti4+ transition thereof make such a transition metal oxide heterostructure a promising candidate for various electronic properties and charge transfer investigations. Despite the similarities (both structures have a cubic crystallographic phase), there are profound differences in the
  • structures – the differences could be as high as 255 meV measured in the case of and (110) surfaces of CuGaSe2 [34]. For the case of transition metal oxide crystals, XPEEM studies have proved that the WF of the SrTiO3(111) face is higher than that of the (100) face by no less than 210 meV [32]. Smaller
  • the oxygen activity and redox reactions on surfaces, the next experiment was aimed to study the work function dependence upon controlled reoxidation of reduced oxides. Transition metal oxide nanostructures find manifold applications, especially in various (photo)catalytic processes, e.g., water
PDF
Album
Full Research Paper
Published 02 Aug 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • door for potential applications in gas recognition and detection. Keywords: Mn3O4/WO3 composites; heterojunctions; working temperature; gas sensing; selectivity; Introduction Tungsten oxide (WO3) is a highly stable, classical transition metal oxide. When synthesized, WO3 usually presents a yellowish
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • . In addition, FONPs also exhibit nonlinear photonic properties such as two-photon absorption, nonlinear scattering, and optical confinement [1][2]. Ferrous ferric oxide (Fe3O4) is a transition metal oxide that has a large third-order nonlinear optical susceptibility of χ(3) = 4.0 × 10−10 esu and an
PDF
Album
Full Research Paper
Published 20 May 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • metal oxides, is proposed. In detail, the enhanced sensing performance is accounted for by chemical bonds between graphene and metal oxides. Many XPS studies have claimed that there indeed exist chemical bonds between metal oxides and graphene. WO3, a transition-metal oxide semiconductor is widely used
PDF
Album
Review
Published 09 Nov 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • the nonsupported bulk TiO2 as well as calcined Fe3O4. In fact, 30% TiO2/Fe3O4 has shown the highest Cr(VI) photoreduction rate due to formation of effective heterojunction by the loading of 30% TiO2 over Fe3O4 [158]. Visible-light responsive, transition metal oxide modified TiO2 for photocatalytic
PDF
Album
Review
Published 16 May 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • . Keywords: Au-decorated ZnO; carrier dynamics; gas sensors; photocatalyst; SPR effect; Introduction Inorganic transition metal oxide sensor devices have attracted attention in particular for improving gas sensing, energy conversion, electronics, photocatalysis and optoelectronic devices [1][2][3][4]. Among
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • dispersed transition-metal oxide cluster species. Information about crystallinity and phases of the samples were obtained from X-ray diffraction (XRD) analysis. Figure 6a displays the XRD patterns of the as-synthesized CeO2–MOx nanospheres. All diffraction peaks can be assigned to the fluorite-like cubic
PDF
Album
Full Research Paper
Published 16 Nov 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • ) and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs
  • perspectives to improve the properties of the hybrid materials in view of applications are outlined. Keywords: graphene; hybrid; nanoparticle; reduced graphene oxide; transition metal oxide; Review Introduction Graphene consists of a single layer of carbon in a two-dimensional (2D) lattice. It is a densely
  • its susceptibility to oxidative environments. In the last few decades, the synthesis of transition metal oxide (TMO) NPs has attracted much attention, providing the advantages of controlled shape, size, crystallinity and functionality, as well as being ecologically benign, corrosion resistance, easily
PDF
Album
Review
Published 24 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • /COOH-MWCNT composite. This is a common phenomenon in transition metal oxide anode materials. It can be ascribed to the penetration of the electrolyte and gradual exposure of the active sites [38][39][40]. The discharge capacity of the Fe2O3/COOH-MWCNT composite stabilized at 711.2 mAh·g−1 at a current
PDF
Album
Full Research Paper
Published 17 Mar 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • . Keywords: copper; cupric oxide; electron diffraction; galvanic displacement reaction; oxidation; surface wetting; transmission electron microscopy; Introduction The transition metal oxide cupric oxide (CuO) is a stable oxide of copper, and due to its diverse applications, immense research on CuO
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • the high theoretical capacity and enhanced reaction kinetics of MnO, the improved conductivity of carbon anchored with N, and the robust structural endurance, effectively alleviating the problem of volume change. The work provides another credible work supporting that the transition metal oxide based
PDF
Album
Full Research Paper
Published 14 Sep 2016

Distribution of Pd clusters on ultrathin, epitaxial TiOx films on Pt3Ti(111)

  • Christian Breinlich,
  • Maria Buchholz,
  • Marco Moors,
  • Tobias Pertram,
  • Conrad Becker and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2015, 6, 2007–2014, doi:10.3762/bjnano.6.204

Graphical Abstract
  • describes the influence of a transition metal oxide support on noble metal clusters yielding novel catalytic properties [1][2][3][4][5][6][7]. In order to understand this effect, well-defined model systems are needed. “Well-defined” refers to both the clusters and the supporting substrate, as exemplified in
PDF
Album
Full Research Paper
Published 09 Oct 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • analyse structures composed of PTCDA molecules with various experimental techniques [19][20][27]. With respect to the substrate of interest, the (110) face of the rutile titania is the most often studied surface of TiO2 [14][15][16]. Thus, it is quite often recognized as the exemplary transition metal
  • oxide surface. Needless to say, numerous studies on PTCDA molecules address their adsorption and layer formation on various substrates. Usually, when molecule–molecule interactions dominate the layer development, the molecules are ordered in a herringbone structure closely resembling PTCDA bulk crystal
PDF
Album
Full Research Paper
Published 10 Jul 2015

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • fascinating advancements in Li-ion batteries have resulted in a state of the art battery which uses graphitized carbon as the anode, a transition metal oxide as the cathode, coupled such that 240 Wh kg−1, 640 Wh L−1 are provided for thousands of cycles [1]. The wide spread use of Li-ion battery, has been and
PDF
Album
Review
Published 18 Aug 2014

Characterization and photocatalytic study of tantalum oxide nanoparticles prepared by the hydrolysis of tantalum oxo-ethoxide Ta83-O)2(μ-O)8(μ-OEt)6(OEt)14

  • Subia Ambreen,
  • N D Pandey,
  • Peter Mayer and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2014, 5, 1082–1090, doi:10.3762/bjnano.5.121

Graphical Abstract
  • is available concerning the progressive structural evolution in the transition metal oxide system in general. But sometimes new species, metal oxo-alkoxides [5][6][7][8][9], are obtained which have been known to be the direct molecular precursors for oxide phases in sol–gel technology. These oxo
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • article as well as a brief summary of the development prospects of this research topic. Photosensitization of transition metal oxide Photosensitization is an effective method to improve the visible-light photocatalytic ability of wide-bandgap transition metal oxides. The photosensitized transition metal
  • –hole pairs. Then, if coupled with a transition metal oxide, the photogenerated electrons can be easily transferred from the CB minimum of the photosensitizer or LUMO to that of a transition metal oxide. Thus the efficient charge separation in the metal oxide-photosensitizer nanocomposites facilitates
  • ][16][17], we will not repeatedly discuss this part. In the past decade, the rapid development of nanotechnology has provided excellent opportunities for designing a broad range of photosensitized transition metal oxide systems by using different nanostructures as the photosensitizers. Quantum dots as
PDF
Album
Review
Published 23 May 2014

Thermal stability and reduction of iron oxide nanowires at moderate temperatures

  • Annalisa Paolone,
  • Marco Angelucci,
  • Stefania Panero,
  • Maria Grazia Betti and
  • Carlo Mariani

Beilstein J. Nanotechnol. 2014, 5, 323–328, doi:10.3762/bjnano.5.36

Graphical Abstract
  • energy-density is leading to the development of nanostructured metal oxides [2][3][4], because the nanostructuring allows a high specific capacity [5][6][7][8][9][10][11][12][13]. These considerations brought the development of a new variety of transition metal oxide based systems [14][15][16][17][18][19
PDF
Album
Full Research Paper
Published 19 Mar 2014

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • dramatically reduced microphysical changes after electrical operation. Keywords: electron microscopy; memristor; resistance switching; transition-metal oxide; X-ray spectroscopy; Introduction A memristor is a passive electronic element that displays a pinched hysteresis loop in its current–voltage
PDF
Album
Full Research Paper
Published 07 Aug 2013
Other Beilstein-Institut Open Science Activities