Search results

Search for "biofilms" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Microplastic pollution in Himalayan lakes: assessment, risks, and sustainable remediation strategies

  • Sameeksha Rawat,
  • S. M. Tauseef and
  • Madhuben Sharma

Beilstein J. Nanotechnol. 2025, 16, 2144–2167, doi:10.3762/bjnano.16.148

Graphical Abstract
  • present scenario and promotes novel, environmentally friendly remedial measures, regulatory policies, cooperative initiatives to combat microplastic pollution, and vulnerabilities in the fragile Himalayan freshwater aquatic ecosystems. Keywords: biofilms; freshwater system; Himalayan lakes; microplastic
  • smaller molecules [48]. Biofilms adhering to the plastic surfaces are required for biological degradation since they secrete enzymes that degrade polymers outside cells [49]. As noted by Rai et al., biofilms can speed up the breakdown of MPs, even though such a process is prone to interference from
  • studies showing their capacity to break down PET [46]. Biofilms can accelerate the breakdown process under cold conditions by generating enzymatically active microenvironments [71]. According to Dhiman et al., these microbial colonies stick to the surfaces of MPs and release enzymes that break down
PDF
Album
Supp Info
Review
Published 25 Nov 2025

On the road to sustainability – application of metallic nanoparticles obtained by green synthesis in dentistry: a scoping review

  • Lorena Pinheiro Vasconcelos Silva,
  • Joice Catiane Soares Martins,
  • Israel Luís Carvalho Diniz,
  • Júlio Abreu Miranda,
  • Danilo Rodrigues de Souza,
  • Éverton do Nascimento Alencar,
  • Moan Jéfter Fernandes Costa and
  • Pedro Henrique Sette-de-Souza

Beilstein J. Nanotechnol. 2025, 16, 1851–1862, doi:10.3762/bjnano.16.128

Graphical Abstract
  • -mediated AgNPs and ZnO-NPs demonstrated significant antibacterial activity against Streptococcus mutans biofilms [8][9][43], whereas in endodontics, their integration into irrigants and sealers improved disinfection efficiency against Enterococcus faecalis [44]. These findings underscore the translational
PDF
Album
Review
Published 22 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • and other environments, has significant biomedical applications [148]. In this study, NPs were incorporated into biofilms for oral administration, demonstrating controlled release and effective protection of curcumin from external factors. The results discussed in this section highlight the potential
PDF
Album
Review
Published 10 Oct 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • ]. Dendrimers, with their hyperbranched structures, can be precisely controlled for size, shape, and surface chemistry, allowing for highly targeted delivery of anti-biofilms drugs or nucleic acids [81][82]. Polymeric NPs offer several advantages, including biodegradability, biocompatibility, and stability
  • bactericidal effect was also observed in S. pneumoniae and S. pyogenes biofilms, where the same concentration of auranofin NPs reduced bacterial populations by approximately four orders of magnitude more than free auranofin. The antibacterial effects observed in vitro were further confirmed in vivo using a
PDF
Album
Review
Published 15 Aug 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • grow to biofilms (Figure 10a–c). After incubation at 37 °C for 24 h, stripy biofilms of E. coli bacteria were formed on the agar plates (Figure 10d–f). While stripy patterns were observed in the areas of blank PLA film (Figure 10d) and SG/PLA film (Figure 10e), the GO-SG-ZH/PLA film presented an
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • ]. It contributes to tooth damage through two main mechanisms, namely, dental erosion due to acid production and the formation of biofilms that produce plaque on teeth [35]. Berberine has been reported to inhibit biofilm formation of Candida albicans and Staphylococcus aureus [36][37]. In this study
PDF
Album
Full Research Paper
Published 27 Feb 2025

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • branches because of their natural origin and biodegradability. They are used, for example, for paper production, as food additives, in biofilms, and in the production of packing materials and aerogels [15][18][20][21][22]. However, little is known about the structural properties of CNFs, and they require
  • proper characterisation of their micro- and nanostructures. In the last years, SEM visualisation, combined with the critical point drying (CPD) procedure, has been widely used in nanostructural studies of diverse hydrogel-like samples, containing cellulose fibrils, or biofilms [7][40][41]. The CPD method
  • ][106], Salvia hispanica [106][107], and Lallemantia royleana [108]. However, the mucilage extracted from diverse seeds, such as Ocimum basilicum, Cydonia oblonga, Lepidium sativum [109], and the abovementioned flax and chia, are also popular substrates for the production of biofilms or the
PDF
Album
Review
Published 13 Dec 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • key role of the CNT coating topology in the compatibility with living tissues. The formation of biofilms and the microbial proliferation on implants surfaces The interface between implants and tissues is a key vulnerable point for infection spreading because of the formation of bacteria biofilms [101
PDF
Album
Review
Published 16 Aug 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • helps the cell. When pproaching a solid surface, the cells become trapped as they move in circular orbits because of hydrodynamic effects [101][104]. While staying close to the surface may be beneficial as it facilitates surface attachment and, hence, the formation of bacterial biofilms, remaining in
PDF
Album
Review
Published 06 Jun 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • eukaryotic cells [1][2], or bacteria and biofilms [3][4]. As nanovectors of drugs, they can deliver drugs locally, leading to a more efficient drug activity. Also, the required doses and the drug impact on healthy tissues compared to the free drug are lowered. Regarding the dramatic emergence and spreading
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • change [20][21]. Generally, photothermal nanomaterials are being used in cancer therapy, removal of bacterial biofilms, and sensing applications [22][23][24]. Photothermal nanomaterials produce heat in response to the irradiation of photons at a particular wavelength [23]. Similarly, when plasmonic
PDF
Album
Review
Published 04 Oct 2023

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • formation of biofilms [25][26]. A measure of the degree of wetting is the contact angle θ (CA). It describes the angle between the liquid–vapor interface and the liquid–solid interface. According to the CA, surfaces can be classified as superhydrophilic (0° < θ < 10°), hydrophilic (10° ≤ θ < 90
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • bacterial accumulation in implants, surface modification is increasingly gaining attention. Dental implants have been modified with drug-releasing TiO2 nanotubes to overcome the infection caused by the presence of persistent oral pathogenic microbial biofilms [57]. Their nanometer-sized roughness and
  • biofilm inhibition and treatment [88][89][90]. The size of the nps impacts the diffusion into the extracellular polymeric substance matrix, with diameters up to 130 nm demonstrating deep penetration into biofilms. Moreover, positively charged nps exert greater biofilm penetration over anionic or uncharged
  • equivalents. TiO2 nps have been presented as an antifungal biofilm agent against Candida albicans on the surfaces of biomedical implants [91]. In this context, Dworniczek et al. reported that europium-doped and sulfated anatase TiO2 results in the effective photocatalytic inactivation of Enterococcus biofilms
PDF
Album
Review
Published 14 Feb 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • of CTAB-capped gold nanorods on estuarine model systems (consisting of sediments, plants, microbial films, fish, and snails) for observing ecological and environmental impact [71]. The results showed that the biofilms were the primary route through which gold nanorods enters the food chain. It is
PDF
Album
Review
Published 18 Aug 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • limit antimicrobial resistance [22]. Antibacterial, antifouling, and antibiofilm effects of AgNPs have been extensively studied and reveal that they are lethal to bacteria and effectively prevent the formation of biofilms [23]. This suggests that AgNPs can be incorporated into matrices or materials used
  • in the manufacture of medical devices to prevent adhesion, colonization, and formation of microbial biofilms on the surfaces of these devices. Moreover, the history of AgNPs as a broad spectrum microbicidal agent places it as a viable candidate to be one of the basic ingredients of antibiotics to be
PDF
Album
Supp Info
Review
Published 14 May 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • infections, and also inhibit the growth of bacterial biofilms [14][15][16]. AgNPs were also used in developing strong thermally conductive materials. They were used in polymer composites to increase thermal conductivity (K) [77][78] for cooling applications in electronic equipment. Furthermore, AgNPs have
PDF
Album
Review
Published 25 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • promising tool to study intracellular deposits of certain chemical elements. An example are phosphate granules in algal biofilms, which were previously investigated using multiple microscopes in a correlative study [46]. Another, certainly more challenging, example would be the identification of iron–sulfur
  • resolution using electron and ion microscopy techniques. Depending on the sample under investigation, biological samples prepared for HIM might include structures such as bacterial cells, biofilms, exopolymeric substances (EPS), or minerals. The high vacuum applied in HIM means that any liquid remaining in a
  • ]. Glutaraldehyde (2–2.5%) fixation is usually performed at cold temperature (4 °C) to avoid the formation of artifacts and is well suited for samples containing a high density of cells, such as biofilms. The length of the fixation time should be varied depending on the sample. Before fixation, specimens are also
PDF
Album
Review
Published 04 Jan 2021

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • synthetic polymer samples and biological materials. For example, we have recently applied it to map the mechanical properties of biofilms and single cells, describing their behavior with respect to time and frequency [14][33]. A similar approach to ours, which also profits from the elastic–viscoelastic
PDF
Album
Full Research Paper
Published 15 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • being drawn to photothermally active nanoparticles that are capable of converting absorbed light into heat. These nanoparticles can efficiently eradicate bacteria and biofilms upon light activation (predominantly near the infrared to near-infrared spectral region) due a rapid and pronounced local
  • nanocomposites for the light-triggered eradication of bacteria and biofilms. Keywords: antibacterial activity; bacteria eradication; nanoparticles; NIR light; photothermal effect; Introduction Bacteria are considered the major source of hospital-acquired nosocomial infections and patients are at a risk higher
  • than 13.5% of contracting these diseases [1][2]. In addition, the bacterial strains are becoming increasingly resistant to conventional drug treatments [3]. One reason for bacterial resistance is that after attaching to a surface, bacteria can generate biofilms. Biofilms are organized sessile microbial
PDF
Album
Review
Published 31 Jul 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • the gram-positive S. aureus. Biofilm formation is a strategy of microorganisms to avoid unfavorable environmental conditions. Due to high resistance of these microbial populations to commonly used therapeutics, biofilms are a substantial source of antibiotic failure and persistent infections [45]. The
  • efficacy of the nanobeads in the inhibition of biofilm formation was estimated. As can be seen in Table 1 the minimum biofilm inhibitory concentration (MBIC) values are in the range from 0.76 to 3.04 µg/mL. These observations confirm a strong activity of PSSAg against biofilms compared to non-incorporated
  • reports indicating a profound resistance of bacteria grown in biofilms to antimicrobials. Bacterial biofilms are generally less susceptible to silver nanoparticles than planktonic cells, probably due to the extracellular matrix coating the cells in a biofilm, aggregation of the cells to reduce their
PDF
Album
Full Research Paper
Published 14 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • peptide capable of penetrating bacterial biofilms with abundant arginine residue. The hydrogen bonding between the MTU ligands on the surface of Au-MTU NCs and the arginine residues in protamine form a supramolecular host–guest complex, i.e., Au-MTU/Prot. The supramolecular host–guest interactions
PDF
Album
Review
Published 30 Mar 2020

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • , 66119 Saarbrücken, Germany KIST Europe, 66123 Saarbrücken, Germany 10.3762/bjnano.10.220 Abstract Great challenges still remain to develop drug carriers able to penetrate biological barriers (such as the dense mucus in cystic fibrosis) and for the treatment of bacteria residing in biofilms, embedded in
PDF
Album
Full Research Paper
Published 19 Nov 2019

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • studies have reported the preparation and the antibacterial efficacy of PVA films containing plant extracts, silver nanoparticles or zinc oxide nanoparticles [17][18][19][20][21][22]. However, when bacteria start to form biofilms they become resistant and conventional antibiotics do not eradicate biofilms
  • materials that can coat surfaces and are capable of eradicating biofilms with remote physical activation. Even though gold nanoparticles are not intrinsically antibacterial, the thermal relaxation upon NIR light activation can be a major force of antibacterial action as it was shown for monolayers of GNSs
  • on glass slides [8]. In this case, the efficient photothermal response of the monolayers resulted in a local hyperthermia effect that was capable of killing bacteria in Staphylococcus aureus biofilms [8]. Therefore, the motivation of the present work lies on the assumption that the incorporation of
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • differentiation [7], to functionalize implant surfaces [8][9], and to prevent the formation of bacterial biofilms [10]. In the dental field, we have used different micro/nanopatterns that employ an apatite paste [11], a flowable composite resin [12], a titanium coat [13], and curable dental materials [14]. The
PDF
Album
Full Research Paper
Published 11 Jun 2018

Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D

  • Jagoba Iturri,
  • Ana C. Vianna,
  • Alberto Moreno-Cencerrado,
  • Dietmar Pum,
  • Uwe B. Sleytr and
  • José Luis Toca-Herrera

Beilstein J. Nanotechnol. 2017, 8, 91–98, doi:10.3762/bjnano.8.10

Graphical Abstract
  • characterize the formation of biofilms in the recent years [19][20][21][22][23]. In this manuscript, our study is focused on a physico-chemical analysis about how changes in the wettability (hydrophilic vs hydrophobic) of SiO2 surfaces influence the recrystallization pathways of SbpA proteins. By means of
PDF
Album
Full Research Paper
Published 11 Jan 2017
Other Beilstein-Institut Open Science Activities