Search results

Search for "penetration depth" in Full Text gives 123 result(s) in Beilstein Journal of Nanotechnology.

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
PDF
Album
Perspective
Published 10 Nov 2025

Wavelength-dependent correlation of LIPSS periodicity and laser penetration depth in stainless steel

  • Nitin Chaudhary,
  • Chavan Akash Naik,
  • Shilpa Mangalassery,
  • Jai Prakash Gautam and
  • Sri Ram Gopal Naraharisetty

Beilstein J. Nanotechnol. 2025, 16, 1302–1315, doi:10.3762/bjnano.16.95

Graphical Abstract
  • observed. By employing cross-sectional electron microscopy, we scrutinize the penetration depth of laser radiation or laser-affected zone, in the LIPSS-formed SS sheets, revealing a parallel trend with LSFL and HSFL spatial periodicity. Specifically, the penetration depth increases with wavelength up to
  • ); maximum LIPSS; penetration depth; Introduction Nanostructuring on surfaces plays a pivotal role in governing surface properties, and laser-induced periodic surface structures (LIPSS) have emerged as a potent method for achieving nanoscale surface modifications. Over the past decade, LIPSS and laser
  • 400 to 2400 nm laser irradiation. This enabled the examination of the cross-sectional zone where the cumulative effect of the laser irradiation occurs. We analyzed how these effects correlate with the incident laser wavelength. The manuscript delves into the critical parameter of penetration depth, or
PDF
Album
Full Research Paper
Published 11 Aug 2025

Mechanical stability of individual bacterial cells under different osmotic pressure conditions: a nanoindentation study of Pseudomonas aeruginosa

  • Lizeth García-Torres,
  • Idania De Alba Montero,
  • Eleazar Samuel Kolosovas-Machuca,
  • Facundo Ruiz,
  • Sumati Bhatia,
  • Jose Luis Cuellar Camacho and
  • Jaime Ruiz-García

Beilstein J. Nanotechnol. 2025, 16, 1171–1183, doi:10.3762/bjnano.16.86

Graphical Abstract
  • stiffness remain almost unchanged for the tested conditions. However, mean values obtained for Young’s modulus show a shallow trend to decrease with higher osmolarities, particularly when point nanoindentations were used. On the other hand, a clear increase in the penetration depth δmax is observed for
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • pulses is that ns-LAL goes along with a more pronounced melting of the target surface (higher thermal penetration depth and lateral heating), compared to that of ps-LAL, a process that Waag et al. experimentally described by comparing target surfaces after both ps- and ns-LAL [87]. This is because in ns
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • scattering studies with the use of electrons have been hindered by their shallow penetration depth (<1 μm) compared to that of hard X-rays (>100 μm). Recently, the development of free-flowing liquid sheet jets has overcome this limitation by providing flat liquid sheets with thicknesses down to tens of
  • to liquid) should lead to restructuring. In a simple model, the laser energy is converted into heat that will be localized in the absorbing part within the laser penetration depth. Absorption is linear as expressed by the (known) absorption cross section. In the model by Takami et al. [46], which is
PDF
Album
Review
Published 02 Jul 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • addition of water facilitating the production of ethanol [57]. Given the high penetration depth of hard X-rays in materials, XAS in the hard X-ray range is much easier than XPS to be carried out under ambient pressure conditions; it provided valuable insight into the working principles of ceria-based
PDF
Album
Review
Published 10 Jun 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • pulse duration of 10 ps (as the acoustic relaxation time is higher, tac, 1 µm ≥ 500 ps, Equations S11 and S12, Supporting Information File 1). Depending on the optical penetration depth, the particle size influences whether homogeneous or inhomogeneous heating takes place. The heated volume leads to the
  • formation of thermoelastic stress and finally to the formation of shock waves, promoting mechanical fragmentation. For curcumin, the mean optical penetration depth is 32 µm (dopt, 1 µm = 39 µm, dopt, 10 µm = 27 µm), and for CBD, the mean optical penetration depth is 170 µm. The mean absorption coefficients
  • sphere. For both material systems, the mean optical penetration depth is well above the average educt particle size and therefore leads to homogeneous heating of the educt by the laser. Overall, the nutraceutical particles are homogeneously heated during picosecond-LFL, and the criterion for
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • of the Ar-ion bombardment. The thickness of the amorphous layer is around 1.5 nm, which is consistent with the penetration depth of the Ar ions (1.2 nm) estimated by Monte Carlo simulations (Figure 5f) [31]. Therefore, the topographical image is consistent with the cross-sectional image, indicating a
  • , rendering it valuable for both implantation and deposition processes. Our meticulous investigation of the ECR ion source lays the groundwork for ion beam-induced nanostructuring and layer-wise material modification, affording precise control over ion penetration depth and fluence. The manuscript emphasizes
PDF
Album
Full Research Paper
Published 31 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • length λJ = γs, where s is the distance between the superconducting planes, γ is the anisotropy parameter, and λ is the London penetration depth of the magnetic field. When the ratio λ/λJ < 0.46, crossed lattices of Abrikosov and Josephson vortices (vortex chains) are observed; at λ/λJ > 0.46, the
  • artificial pinning centers, or in samples with columnar defects perpendicular to the superconducting planes, the average deviation of pancakes from the axis of the vortex filament due to thermal motion is much less than λ, that is, the London penetration depth of the magnetic field into the superconductor
  • magnetic field penetration depth and the coherence length [28]. In this paper, the following forms of this dependence are used: and These relations fairly accurately reflect the temperature dependence of the characteristic lengths in bismuth HTSC [29]. In this work, in addition to the classical potential
PDF
Album
Full Research Paper
Published 13 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • endogenous chromophores (i.e., blood, water, and melanin) and biomolecules in the human body have a low absorption rate of NIR light. Hence, NIR has a high tissue penetration depth, which can avoid photothermal damage to healthy tissues [35][36][37]. Activation of photothermal nanomaterials with NIR light
  • penetration depth is only a few millimeters, which does not provide clear imaging of deeper ocular structures [177][178]. Fluorescence imaging is hindered by contrast agent photobleaching and phototoxicity, resulting in low image quality and biological side effects [179][180]. Photoacoustic imaging has deep
PDF
Album
Review
Published 17 Feb 2025

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • -energy electrons produced by ion–substrate interactions. In this respect, the increased importance of this reaction pathway is a consequence of the extremely inefficient momentum transfer for H2+/Pt(CO)2X2 collisions, coupled with the greater penetration depth of the lighter ions within the tantalum
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • functionality [23][24]. Here, skin depth refers to the penetration depth of an electromagnetic field into a (non-transparent) metallic material. While pure metal deposition by direct electron beam writing was demonstrated for gold precursors with inorganic ligands [25][26], high purity comes often at the
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • , also known as a peg-in-pit sensillum [154]. The protruding hair-like receptors help to absorb thermal radiation, since the penetration depth of infrared radiation into insect cuticle is quite shallow [155]. Additionally, the hair-like sensillum possesses electron-dense filaments that may improve
PDF
Album
Review
Published 06 Jun 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • × 1017 ions/cm2. Due to a higher mass difference between Si and Ge, Ge being a heavier target, there was not too much damage as a result of Ar ion irradiation. Therefore, most of the region remained unaltered beyond the ion penetration depths for both cases. This may be due to the high penetration depth
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • less than the London penetration depth to the normal-state sheet resistance R□ and the superconducting energy gap Δ0. For a conductor of length ℓ and width w, the kinetic inductance is where Lk,□ is the kinetic inductance per square. From Equation 4, we require a superconducting film with large normal
PDF
Album
Full Research Paper
Published 15 Feb 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • were rather long since their lengths were much larger than the Josephson penetration depth λJ < 1 µm (T = 2.7 K). The oscillator chip contains six JJ structures integrated into modified dipole antennas [29]. When the DC bias current is passed through the junction, the AC voltage arises, the frequency
PDF
Album
Full Research Paper
Published 04 Jan 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • the photothermal material; the material should exhibit strong light-to-heat conversion and good photostability. The structural and morphological properties of the selected material should ensure strong absorption in the NIR region to attain better penetration depth in the LFA nitrocellulose membrane
PDF
Album
Review
Published 04 Oct 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • molecules are deposited at the surface, even higher energy collisions will only transmit a fraction of the energy to the water molecules, which will be either sputtered or fragmented and implanted. Hence, the resulting penetration depth of hydrogen and oxygen should be shallower than for argon. It is
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • connected to the microscope was used. The white-light wavelength range is 400 to 700 nm, and for these wavelengths the penetration depth in GaInAs ranges between 10 and 100 nm. This makes our measurements mainly sensitive to the surface states and surface band bending. Additionally, a uniform illumination
PDF
Album
Full Research Paper
Published 14 Jun 2023

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • from Josephson oscillators. Figure 1a shows a sketch of a typical FFO. It is based on a sandwich-type (overlap) JJ with the length, a ≫ λJ, much larger than the Josephson penetration depth, and both in-plane sizes much larger than the thickness of the junction interface, d ≪ b ≪ a. The in-plane
  • the case of Nb/AlOx/Nb tunnel JJs, which are used in state-of-the-art FFOs [9][11]. I assume that a = 100 μm, b = 10 μm, d = 2 nm, εr = 10, d1 = d2 = 100 nm, the zero-temperature London penetration depth λL0 = 100 nm, Jc0 = 5 × 103 (A/cm2), Ic0 = Jc0ab = 50 mA, and the characteristic voltage Ic0Rn = 1
PDF
Album
Full Research Paper
Published 26 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • penetration depth. This precludes direct interaction between the JJs [28]. Therefore, JJs are coupled only indirectly via common cavity modes, corresponding to the formation of standing surface plasmon waves along the electrode [34]. The standing wave imprints its order on Josephson junctions in the array
  • junctions are of the overlap type and are separated by a distance of 12 μm, that is, one hundred times larger than the London penetration depth in Nb. This precludes direct interactions between them. Nevertheless, they can be effectively synchronized via the indirect coupling mechanism mediated by the
PDF
Album
Full Research Paper
Published 28 Dec 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • , the obtained material revealed an appropriate mechanical strength to reach penetration depth up to 200 µm. The degree of drug penetration across human excised cornea after 24 h was assessed for the traditional suspension used for 5 min or 24 h and after 5 min of contact with the microneedles. The
PDF
Album
Review
Published 24 Oct 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • . Description of the amorphization The two samples at several stages of the sputtering process are shown in Figure 6 to illustrate the evolution of the amorphization process. The penetration depth of argon atoms is limited to the first few lattices inside the silicon, for both the contaminated and clean samples
  • milling is essential because most samples analysed in high-precision instruments are prepared using this method. This can be best achieved using low-beam energies, ideally in the sub-keV range [18], since low-energy ion beams (under 500 eV) produce a thinner amorphous layer due to their lower penetration
  • depth. Investigations performed with low-energy argon ions [15][19][20] have shown that the current model describing the sputter yields and the sputtering processes (such as sputtering threshold and the amorphization process) does not fit with experimental data, leading to discrepancies that cannot be
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • crystallization of the oxide layer during electron beam exposition. We measured the temperature dependence of the interfacial energy between Ga–In–Sn eutectic liquid and AFM tips by dipping the AFM tips inside a Ga–In–Sn liquid drop. The penetration depth of the tips was in the order of several hundreds of
  • depth values below 50 nm (see Figure 4b,c). At low penetration depth values, the contact between tip and liquid may not be intimate yet, and the observed deviation from linearity in the Fn(δ) plots may correspond to a pre-tension effect of the interface. The penetration of the tip at larger depths is
  • apex of h ≈ 200 nm, which corresponds to the penetration depth of the tip into the liquid alloy. Coincidently, we determined the largest interfacial tension value at the melting point of the liquid alloy for the same tip, = 230 mN/m. The adhesion of melt residues at the SiOx tip can be attributed to
PDF
Album
Full Research Paper
Published 23 Aug 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • force of the skin. Successful insertion is achieved upon reaching sufficient penetration depth and creating microchannels within the skin. However, the skin’s inherent elasticity and its irregular surface, with the tendency to fold around MN projections, result in unpredictable array penetration
  • confocal laser scanning microscope (Carl Zeiss, Jena, Germany) to visualize the penetration depth and estimate the FPL for individual MN projections. The images were further analyzed using ImageJ software (U. S. National Institutes of Health, Bethesda, Maryland, USA). Measuring the force of insertion Skin
PDF
Album
Full Research Paper
Published 08 Jul 2022
Other Beilstein-Institut Open Science Activities