Search results

Search for "SiO2/Si substrate" in Full Text gives 34 result(s) in Beilstein Journal of Nanotechnology.

Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

  • Felix Pyatkov,
  • Svetlana Khasminskaya,
  • Vadim Kovalyuk,
  • Frank Hennrich,
  • Manfred M. Kappes,
  • Gregory N. Goltsman,
  • Wolfram H. P. Pernice and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2017, 8, 38–44, doi:10.3762/bjnano.8.5

Graphical Abstract
  • electron beam lithography on top of Si3N4/SiO2/Si substrate. Au/Cr contacts were produced by physical vapor deposition, and 600 nm wide, half-etched Si3N4-waveguides were formed with reactive ion etching. A typical sample contains tens of contact pairs and CNTs that were placed in between using
PDF
Album
Full Research Paper
Published 05 Jan 2017

Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

  • Martin Schilling,
  • Paul Ziemann,
  • Zaoli Zhang,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2016, 7, 591–604, doi:10.3762/bjnano.7.52

Graphical Abstract
  • Figure 2a the RHEED pattern for a 3 nm Fe48Pt52 film on a SiO2/Si substrate is presented after post annealing at 650 °C for 30 min. A diffuse intensity distribution is observed without any superposed streaks or spots. The bright ring around the direct beam is a halo feature due to the RHEED arrangement
PDF
Album
Full Research Paper
Published 21 Apr 2016

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • conventionally or with a laser the flat morphology of square, line, or tip deposits on the pre-patterned SiO2/Si substrate changes (Figure 3 and Figure 4). While the laser allows for local heating, the conventional hotplate approach allows for more accurate temperature measurements. The visible onset of Cu
  • nanocrystal precipitation on the deposit surface starts at around 150 °C for the Cu(hfac)2 deposits on the pre-patterned SiO2/Si substrate. Further heating to about 200 °C for 30 min did not visibly change the appearance of the Cu nanocrystal precipitation. EDX analysis after conventional heating to 200 °C
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Analytical development and optimization of a graphene–solution interface capacitance model

  • Hediyeh Karimi,
  • Rasoul Rahmani,
  • Reza Mashayekhi,
  • Leyla Ranjbari,
  • Amir H. Shirdel,
  • Niloofar Haghighian,
  • Parisa Movahedi,
  • Moein Hadiyan and
  • Razali Ismail

Beilstein J. Nanotechnol. 2014, 5, 603–609, doi:10.3762/bjnano.5.71

Graphical Abstract
  • -based devices, graphene with its outstanding properties such as consuming less energy and faster heat dissipating show a great promise in electrolyte-gated graphene field-effect transistors (EGFETs) [20]. An EGFET fabricated on a SiO2/Si substrate with gold source and drain electrodes and a graphene
PDF
Album
Full Research Paper
Published 09 May 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • measurements were performed under ambient conditions using amplitude modulated KPFM, both having a great impact on the results. In this work we study the work function of SLM on a standard SiO2/Si substrate using non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy in situ. In our
PDF
Album
Full Research Paper
Published 13 Mar 2014

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • cross-linked SAM is transferred onto another substrate, e.g., SiO2/Si. Figure 1e demonstrates a successful transfer of structured CNMs in Chinese characters which means nanomembranes: the grey background is SiO2/Si substrate and the darker features are transferred CNMs. For the fabrication of
  • been transferred onto a SiO2/Si substrate. Interestingly, the first step is the formation of circular shaped nuclei, which is analogous to the nucleation for thin films or polymer crystallization [23]. After a dose of 176 µC/cm2 (Figure 3a), the average diameter of the nuclei is 9.0 ± 1.7 nm, which
  • were transferred onto another substrate for further investigations again with the HIM. For the transfer of NBPT CNMs onto a SiO2/Si substrate the samples were spin-coated with a layer of poly(methyl methacrylate) (PMMA) for stabilization and baked on a hotplate at 90 °C for 5 min. The separation of the
PDF
Album
Full Research Paper
Published 21 Feb 2014

Ordered arrays of nanoporous gold nanoparticles

  • Dong Wang,
  • Ran Ji,
  • Arne Albrecht and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2012, 3, 651–657, doi:10.3762/bjnano.3.74

Graphical Abstract
  • samples in a 65 wt % HNO3 solution at 21 °C for 5 min. A reference sample (15 nm Au/20 nm Ag bilayers on a flat SiO2/Si substrate) was processed by annealing at 900 °C in Ar for 15 min and then submerging in a 65 wt % HNO3 solution at 21 °C for 5 min. The SiO2 thickness of the reference sample is 100 nm
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2012

Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism

  • Gregor Hlawacek,
  • Vasilisa Veligura,
  • Stefan Lorbek,
  • Tijs F. Mocking,
  • Antony George,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2012, 3, 507–512, doi:10.3762/bjnano.3.58

Graphical Abstract
  • surface layer of the relevant material (SiO2, PFS, or MS). As a consequence of the identical strip width for PFS and MS strips, we do not know a priori which stripe is which. However, we assign the bright structureless areas to the uncovered SiO2/Si substrate. It is understood that because of the
PDF
Album
Full Research Paper
Published 12 Jul 2012

Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

  • Dong Wang,
  • Ran Ji and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2011, 2, 318–326, doi:10.3762/bjnano.2.37

Graphical Abstract
  • symmetry (substrate B). SEM images of induced particles on the flat SiO2/Si substrate after dewetting of the 5 nm (a) and 60 nm (b) thick Au films. (c) Histograms of particle size distributions produced by the dewetting of the 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, and 60 nm thick Au films on the flat SiO2/Si
  • substrate A have a spatial period of 513 nm and a depth of 150 nm. The holes in the substrate B have the same spatial period of 513 nm, a diameter of about 490 nm, and a depth of 120 nm. Figure 2 shows the SEM images of the Au particles formed from the 5 nm and 60 nm thick Au films on a flat SiO2/Si
  • substrate. Usually, flat substrates lead to a broad distribution of particle size and spacing of the dewetted particles. Figure 2c shows the particle size distributions produced by dewetting of Au films with thicknesses from 5 nm to 60 nm on the flat substrates. Both, mean particle size and the width
PDF
Album
Video
Full Research Paper
Published 22 Jun 2011
Other Beilstein-Institut Open Science Activities