Search results

Search for "charge-transfer" in Full Text gives 360 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • , we calculated the charge transfer of the system using Bader charge analysis, which was 0.1e− from GO to TA. The low value of charge transfer indicates that van der Waals (vdW) interaction forces dominate the binding between GO and TA. This is confirmed by the unfavorable binding energy (i.e
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • carriers (for electrons and holes). To calculate the charge transfer and use it in the solar cell, it is required to know the electron affinity and work function of monolayer Ge2Se2. The electron affinity is calculated as EA = EVac − ELUMO, where EA is the electron affinity, EVac is the vacuum energy level
  • using Ge2Se2 as HTL; (a) device setup consisting of stacked layers of FTO–TiO2–CsSn0.5Ge0.5I3–Ge2Se2–Ag; (b) band offset among different PSC layers, demonstrating the ease of charge-transfer from the active layers to the respective transport layers. PSC performance parameters as functions of (a) HTL
PDF
Album
Full Research Paper
Published 11 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • difference (LCPD) between a probe tip and a surface, related to the work function. Here we use this technique to map the LCPD of graphene nanoribbons grown on a Au(111) substrate. The LCPD data shows charge transfer between the graphene nanoribbons and the gold substrate. Our results are corroborated with
  • opening a size-dependent energy gap [6][9]. As in graphene, the Fermi level of GNRs is also strongly influenced by charge transfer between the substrate and the GNR [10], again related to differences in the work function. Here, we take the work function as a local property influenced by local charge, that
  • electronic properties, a suitable method to study the charge transfer, that is, the local work function, between a GNR and a metal substrate at the atomic scale is needed. In general, as detailed above, the local work function can provide evidence for structural, electronic, and chemical variations at
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • apparent flake height seems to depend on both the tip–sample voltage and on the material, we explore these correlations on both GO and rGO flakes by biasing the tip with a DC voltage. To prevent any interaction between flakes arising from charge transfer through the substrate [79], we deliberately chose
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • from STS experiments [49][50][51], it is lower than the energy observed in photoemission experiments [52]. A possible rationale is the locally lifted graphene in the presence of the tip [53], which in turn decreases the charge transfer from graphene to the metal and reduces the p-doping [52] and
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • equal to or greater than the binding energy of singlet and triplet excitons. The energy levels system of the considered devices with QDs determines the optimal photocurrent of dissociation for most singlet excitons, which require at least 0.07 eV energy [64]. The production of charge-transfer carrier
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • Rs corresponds to solution resistance, Rct is related to charge transfer resistance at the interface of the solution and the electrode material, while CPE is a constant phase element, which represents capacitive performance of the electrode. The circuit parameters and their standard deviations were
  • , the results indicate that microporosity, and thus the electroactive surface area of the electrode, increases with a higher content of cCB in the hydrogel-MCO film. A slightly different trend can be observed for the charge transfer resistance Rct at the solution–film interface. The highest Rct is
  • electrode and the reference electrode, respectively. Linear sweep voltammetry (LSV) data was recorded from 1.1 to 2.0 V vs RHE with a 10 mV/s scan rate. The charge transfer resistance (Rct) was determined based on EIS measurements. The spectra were obtained in the frequency range from 10 kHz to 0.1 Hz at
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Josephson dynamics and Shapiro steps at high transmissions: current bias regime

  • Artem V. Galaktionov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2024, 15, 51–56, doi:10.3762/bjnano.15.5

Graphical Abstract
  • T → 0 can flow across the junction. The situation becomes entirely different provided one goes beyond the tunneling limit and considers highly transparent superconducting weak links in which case the charge transfer is essentially controlled by the mechanism of multiple Andreev reflection [2]. This
PDF
Album
Full Research Paper
Published 11 Jan 2024

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • atom forms two bonds with Au atoms in the Au-fcc/Ge structure and only one at the Au-hcp/Ge interface. The maps of charge density differences show charge transfer occurs both at the interface and in the adjacent germanium layer. Appendix A Surface energies The surface energies calculated for several
  •  13 with yellow regions representing charge accumulation and light blue regions indicating charge depletion. For all heterostructures, the charge transfer from Au and Ge interfacial atoms leads to the electron accumulation at approximately half of their distance. At the presented isocharge surface
PDF
Album
Full Research Paper
Published 15 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • organic blends, charge photogeneration can be understood, in a first approach, as the result of exciton dissociation into Coulomb bound charge transfer (CT) states at the donor–acceptor interfaces. This event is finally followed by the dissociation of the CT states into delocalized carriers of opposite
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • presented. Finally, we present the potential pathways and current problems in progressing MOF-based nanomaterials for CO2 conversion. Review Mechanism of CO2RR The process of CO2 reduction consists of three steps. First, the CO2 molecules are adsorbed on the active sites of catalysts. Second, charge
  • transfer processes take place to create intermediates such as *CHO, *CO, and *COO. The process could include many electrons attending in the electrochemical reaction, and orientate the formed products. Finally, these species are desorbed from the active sites of electrocatalysts to generate various
PDF
Album
Review
Published 31 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • formation of a charge-transfer complex between chemisorbed species and matrix material, which yields enhancement when the excitation frequency resonates with a charge-transfer transition [7]. Noble metal nanoparticles (NPs) have gained much popularity in various fields, such as analytical chemistry and
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • the low-frequency region. The former component is characteristic of charge transfer resistance, while the latter presents the diffusion of ions in the solid phase. Compared to the pure Ge electrode, the diameters of the semicircle are smaller in the Ge@C electrodes because of the higher electrical
  • conductivity of the additional carbon matrix, indicating the decrease in charge transfer resistance of the composite electrodes. The EIS results were fitted using an equivalent circuit model, including an internal or electrolyte resistance (Re), a charge transfer resistance (Rct), and two constant phase
  • elements (CPE) [65]. According to Table 2, the charge transfer resistances of all Ge@C electrodes are much lower than the values of the pure Ge electrode, and Ge/C-iM750 exhibits the lowest value. The ionic conductivity was evaluated using the lithium-ion diffusion coefficient () using the following
PDF
Album
Full Research Paper
Published 26 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • , the sensor’s oxidation–reduction behavior was investigated. Electrochemical impedance spectroscopy was conducted to study the electrochemical properties of the modified the GQDs/GCE working electrode, which showed excellent charge transfer properties. We measured malathion in varying concentrations
  • /reduction behavior and charge transfer resistance, cyclic voltammetry and electrochemical impedance spectroscopy were performed. An investigation of the relationship between concentrations and peak currents was conducted using differential pulse voltammetry (DPV). In this study, the modified GQD electrodes
  • Brillouin zone, while the G band arises from vibrations in rings of sp2-hybridized atoms inside the GQDs. Electrochemical studies Electrochemical impedance spectroscopy In order to investigate the charge transfer on the electrode surfaces, electrochemical impedance spectroscopy (EIS) was used with the redox
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • fluorophore ligands, which accounts for the excellent quenching effects of PET on the luminescence of the MOF sensor [54]. Photoinduced charge transfer (PCT): The PCT mechanism relies on the exchange of electrons between acceptor (analyte) and the donor (fluorophore), which results in the alteration of the
  • fluorescence signals. A partial charge transfer of a fully conjugated system occurs in optical PCT sensors. This mechanism involves the complexation of donor and acceptor, which changes the electron energy levels and the fluorescence signals. While PET sensors have the electron donor moiety separated from the
  • fluorophore by a spacer, PCT sensors typically feature an integrated receptor and fluorophore [46]. Intramolecular charge transfer (ICT): When the fluorophore contains both electron-withdrawing and electron-donating groups, ICT, an electron transfer process, takes place. In contrast to PET, the electronic
PDF
Album
Review
Published 01 Jun 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • -withdrawing (EW) groups, such as malononitrile (DCV) and 2-(3-oxo-indan-1-ylidene)malononitrile (INCN) to the DPP core enhances the stability of DPP dyes [27]. In addition, when a thienyl spacer was introduced between the DPP and EW groups, efficient intramolecular charge transfer (ICT) interactions were
PDF
Album
Review
Published 04 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • indicate charge transfer from cobalt to carbon and the formation of Co–O–C bonds in the catalyst [31]. Moreover, the spectra show that the dominant cobalt species in the studied catalysts were Co3+ and Co2+ [25]. The L3 edge of carbon in NiFe-GO and CoNiFe-GO is presented in Figure 3d. In general, the
  • the improvement in the OER of NiFe-GO with the higher Qdep of NiFe and GO resulted mainly from the NiFe structure and the electroactive surface area and the porosity of GO. Electrochemical impedance spectroscopy (EIS) was performed in order to determine the charge transfer resistance (Rct) of the
  • RHE with a scan rate of 5 mV·s−1. The EIS spectra were recorded in the frequency range from 10 kHz to 1 Hz at 1.6 V vs RHE and amplitude of 10 mV. In order to determine Rct, EIS spectra were fitted with a simple Randles model with the solution resistance, charge transfer resistance, and the constant
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • semiconductor and a noble metal with an appropriate work function. A unidirectional charge transfer is enabled by the Schottky potential barrier, increasing charge density and separation [72]. Shen et al. [166] created a Schottky junction by synthesising NiSe2 nanosheets on top of BiVO4 nanosheets using a
PDF
Album
Review
Published 03 Mar 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • interface state density inside semiconductors. We derive an analytical expression for the electrostatic forces between a tip and a semiconductor sample in the accumulation, depletion, and inversion regions, taking into account the charge transfer between the bulk and interface states in semiconductors. We
  • -low KPFS using high- and low-frequency AC bias voltages to measure the interface state density inside semiconductors. We derive an analytical expression for the electrostatic force between the tip and the sample that takes into account the charge transfer between the bulk and interface states in the
  • -low KPFS using high-frequency and low-frequency AC bias voltages to measure the interface state density in semiconductors. We derived an analytical expression for the electrostatic force between the tip and the sample that takes into account the charge transfer between the bulk and interface states in
PDF
Album
Full Research Paper
Published 31 Jan 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • significantly, especially, by the presence and distribution of various functional groups on the basal plane and edges of carbon network, affecting, in turn, the CQD properties. Doping of CQDs with nitrogen, chlorine, or fluorine heteroatoms induces larger a transport bandgap, increased charge transfer
  • resistance, and better antioxidant properties compared to pristine CQDs [5]. Functionalization of CQDs with amino groups (NH2 groups) induces a redshift of the photoluminescence because of the charge transfer from the amino groups to the carbon honeycomb core [6]. Also, grafting with NH2 groups, by means of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • − ionization of the corresponding atoms, which enables effective charge transfer along the polymer chain [2]. (a) Schematics of a Pb (grey)–PDP (blue)–Pb (grey) three layer heterostructure on insulating substrate (not indicated for simplicity). The layout enables electron transport measurements of each lead
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • , which can improve the charge transfer states [33][34]. These two low-bandgap semiconductors improved considerably the PEC water splitting efficiency [35][36]. However, the fabrication of MoS2/TNAs and g-C3N4/TNAs has many disadvantages such as high synthesis temperatures, the requirement of a binder, or
  • with previous publications [50][51][52]. Figure 5 shows the results of electrochemical impedance spectroscopy (EIS), that is, Nyquist and Mott–Schottky plots of the materials, which give information about the charge transfer mechanism at the interface. In Figure 5a, the Nyquist plots of the samples all
  • exhibit only single semicircular shape, which shows the charge transfer resistance equivalent to the polarization resistance. This result also demonstrates a unique interaction of the electrode surface and the electrolyte solution. Furthermore, the g-C3N4 sample shows the semicircle with the largest
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • performance because free electrons can shift to the trap state, resulting in a potential difference in the interface between the electrolyte and the electrode [40]. The Warburg element (W3) in the equilibrium circuit, indicating the contribution of diffusion to the overall charge transfer on the electrode, is
  • frequencies [42][43]. Additionally, the equivalent circuit fitted to the TiO2@MWCNTs electrode indicates that electron and ion transfers and the electrode material contribute to the overall charge transfer [43]. The results suggest synergies of TiO2 nanoparticles and MWCNTs in the TiO2@MWCNTs electrode
PDF
Album
Full Research Paper
Published 14 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • using electrochemical impedance spectroscopy (EIS) measurements. In 2.0 mM [Fe(CN)6]3−/4− containing 0.2 M KCl as the supporting electrolyte, the Nyquist plots of the SPCE, Gr/SPCE, AuNPs/SPCE, and AuNPs/Gr/SPCE are shown in Figure 3d. The inset is the equivalent circuit indicating the charge transfer
  • -controlled charge-transfer process through the electrode–solution interface. Regarding the qualitative aspect, it was found that the nanocomposite-modified electrode shows a diffusion-limited charge transfer process. The bare SPCE comparatively showed lower charge transfer resistance at higher frequencies
  • than that of individual nanomaterial-modified SPCEs, representing a limitation of electron transfer through the electrode–solution interface [56] for different electrode surfaces. The EIS plots for the modified SPCEs surfaces also reveal that the electrode–solution interfacial charge transfer process
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022
Other Beilstein-Institut Open Science Activities