Search results

Search for "synthesis" in Full Text gives 1203 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Advances of aptamers in esophageal cancer diagnosis, treatment and drug delivery

  • Yang Fei,
  • Hui Xu,
  • Chunwei Zhang,
  • Jingjing Wang and
  • Yong Jin

Beilstein J. Nanotechnol. 2025, 16, 1734–1750, doi:10.3762/bjnano.16.121

Graphical Abstract
  • ) selection, synthesis, and technical details of aptamers and their applications are described in detail in the article. The exclusion criteria are: (1) review, letter, news; (2) comment of a conference or seminar; (3) case report; or (4) irrelevant research topic of the article. Eventually, 17 original
PDF
Album
Review
Published 06 Oct 2025

Ambient pressure XPS at MAX IV

  • Mattia Scardamaglia,
  • Ulrike Küst,
  • Alexander Klyushin,
  • Rosemary Jones,
  • Jan Knudsen,
  • Robert Temperton,
  • Andrey Shavorskiy and
  • Esko Kokkonen

Beilstein J. Nanotechnol. 2025, 16, 1677–1694, doi:10.3762/bjnano.16.118

Graphical Abstract
  • significant challenges for both synthesis and in operando characterization. In particular, photon-hungry techniques like APXPS require the high brilliance provided by fourth-generation synchrotron sources to probe such dilute systems. From a synthetic perspective, stabilizing isolated metal atoms against
PDF
Album
Review
Published 24 Sep 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • containing immunomodulators and checkpoint inhibitors to achieve a synergistic effect and consequently expand the clinical potential of nanotechnology containing natural products. Patent KR20220169108 was discussed in the article published by Dhandapani et al., which addresses the synthesis, physicochemical
  • , microemulsion and inverse microemulsion, hydrothermal method, seeding, sonoelectrodeposition, and coprecipitation can be implemented for the synthesis of nanoparticles [98]. In the context of cancer treatment, nanoparticles promote enhanced biocompatibility, reduced toxicity, and increased stability and
  • light, synthesis in reverse micelles, and condensation processes [148]. Gold nanoparticles have great benefits for cancer and immunotherapy, providing increased efficiency and effectiveness by acting as immune regulators, enhancing the delivery of antitumor drugs, and improving biocompatibility
PDF
Album
Review
Published 22 Sep 2025

Nanotechnology-based approaches for the removal of microplastics from wastewater: a comprehensive review

  • Nayanathara O Sanjeev,
  • Manjunath Singanodi Vallabha and
  • Rebekah Rubidha Lisha Rabi

Beilstein J. Nanotechnol. 2025, 16, 1607–1632, doi:10.3762/bjnano.16.114

Graphical Abstract
  • synthesis, hybrid system integration, and machine learning optimization. Together, these approaches aim to establish a comprehensive, scalable, and environmentally safe solution for the remediation of MPs in wastewater systems. Keywords: artificial intelligence; membrane technology; microplastic
  • synthesis and characterisation techniques have enabled the detection of materials at the nanoscale, unlocking new opportunities across various streams. In the field of water treatment, nanotechnology is gaining wide attention due to its enhanced efficiency, effectiveness, affordability, and durability. The
  • techniques for the removal of MPs. Nanoparticle-based removal Advancements in characterization and synthesis techniques have enabled the manipulation of materials at the nanoscale, leading to innovations across various domains, including energy, electronics, and biomedical applications. Figure 5 depicts
PDF
Album
Review
Published 15 Sep 2025

Photocatalytic degradation of ofloxacin in water assisted by TiO2 nanowires on carbon cloth: contributions of H2O2 addition and substrate absorbability

  • Iram Hussain,
  • Lisha Zhang,
  • Zhizhen Ye and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2025, 16, 1567–1579, doi:10.3762/bjnano.16.111

Graphical Abstract
  • deposition, electrophoretic deposition, and electrochemical deposition are extensively utilized for the synthesis of TiO2 nanowire arrays, owing to their advantageous physical properties and varied applications [14][15]. Our previous study accomplished the precipitation of TiO2 nanowire arrays, with
  • without further purification. Deionized water was used for all the experiments. Synthesis of TiO2 nanowires on carbon cloth The synthesis follows basically our previous study but on a larger scale [16]. In brief, a 5 cm × 10 cm piece of carbon cloth (CC) underwent three cleaning cycles using ethyl alcohol
  • Discussion Microstructure and morphology of photocatalysts Figure 1a shows schematically the synthesis of TiO2 nanowires on an activated carbon cloth substrate. When the carbon cloth is immersed in the Ti–H2O2 precursor solution maintained at 80 °C, first, the carbon cloth surface is activated, and, second
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2025

Influence of laser beam profile on morphology and optical properties of silicon nanoparticles formed by laser ablation in liquid

  • Natalie Tarasenka,
  • Vladislav Kornev,
  • Alena Nevar and
  • Nikolai Tarasenko

Beilstein J. Nanotechnol. 2025, 16, 1533–1544, doi:10.3762/bjnano.16.108

Graphical Abstract
  • certain progress in this field, there is still a need for reliable and controlled synthesis methods for silicon-based nanostructures. Nowadays, pulsed laser ablation in liquids (PLAL) has been recognized as a general and important route for the synthesis of nanoparticles (NPs) with tuned optical and
  • the preparation of non-spherical NPs are the fabrication of semiconductor nanowires such as hybrid CdS [20] and ZnS nanowires [21]. Si nanowires can also be prepared by laser ablation [4][5]. However, the synthesis is typically performed in gaseous atmosphere, and the developed approaches require high
  • laser beam energy distribution (Gauss, Bessel, or annular) for the synthesis of silicon nanomaterials of different shapes by laser ablation in a liquid. The advantages of laser beams with Bessel and annular profiles were demonstrated earlier in the fields of material processing, such as microdrilling
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2025

Dendrimer-modified carbon nanotubes for the removal and recovery of heavy metal ions from water

  • Thao Quynh Ngan Tran,
  • Huu Trung Nguyen,
  • Subodh Kumar and
  • Xuan Thang Cao

Beilstein J. Nanotechnol. 2025, 16, 1522–1532, doi:10.3762/bjnano.16.107

Graphical Abstract
  • reagents or solvent systems [39][40]. DESs are formed through hydrogen bonding between two solid components resulting in eutectic liquids having a melting point lower than those of the individual components [41][42]. They offer advantages such as simple synthesis, low cost, and broad applications in
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • )carbodiimide (EDC) coupling [5] and “click” chemistry reactions [6] have proven to be effective tools in the synthesis of novel functional materials. Carbodiimide coupling is an invaluable tool for the coupling of carboxylic acids to amines, through amide bond formation. The combination of EDC and N
  • IONPs, which can be coupled to azides through the CuAAC, with no detectable cross-reactivity. At this point, it may be tempting to label the conjugation reaction as a success. However, an important step in the synthesis has been neglected: We have not provided evidence that the binding of PPA is through
  • were performed at 4000g, for 3 min, at rt. Synthesis of 3,4-DHBA exchanged nanoparticles (IONP-3,4-DHBA) Oleic acid-capped iron oxide nanoparticles (IONP-OA) were prepared in accordance with a previously established method, described in more detail elsewhere [50][72]. Ligand exchange was carried out
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal
  • Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization. The four
  • sections start with an introduction to the common laser-assisted synthesis for nanocolloids and different methods of thin film fabrication using these nanocolloids followed by devices fabricated and characterized for applications including photovoltaics, photodetectors, catalysis, photocatalysis
PDF
Album
Review
Published 27 Aug 2025

Photochemical synthesis of silver nanoprisms via green LED irradiation and evaluation of SERS activity

  • Tuan Anh Mai-Ngoc,
  • Nhi Kieu Vo,
  • Cong Danh Nguyen,
  • Thi Kim Xuan Nguyen and
  • Thanh Sinh Do

Beilstein J. Nanotechnol. 2025, 16, 1417–1427, doi:10.3762/bjnano.16.103

Graphical Abstract
  • enhancement factor of 1.15 × 106, enabling detection limits down to 10−9 M. These findings demonstrate that green LED-mediated synthesis provides a simple, environmentally friendly route to fabricate high-yield AgNPrs with superior SERS capabilities, suitable for ultrasensitive chemical and biological sensing
  • applications. Keywords: light-emitting diodes (LEDs); photochemical synthesis; silver nanoprisms; surface-enhanced Raman scattering (SERS); trisodium citrate; Introduction Anisotropic silver nanoparticles (ASNPs) have attracted increasing attention from research groups worldwide due to their potential
  • ] SERS substrates by impregnating them with silver nanostructures. While many efforts have been devoted to the synthesis of AgNPrs and evaluation of their SERS activity, limited studies have focused on the SERS performance of photochemically synthesized AgNPrs, particularly in 4-mercaptobenzoic acid (4
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2025

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts

  • Tuan Minh Truong Dang,
  • Thao Thu Thi Huynh,
  • Guo-Ping Chang-Chien and
  • Ha Manh Bui

Beilstein J. Nanotechnol. 2025, 16, 1401–1416, doi:10.3762/bjnano.16.102

Graphical Abstract
  • areas by analyzing topics, keywords, and relevant studies on “MPs and BC” through bibliometric methods, (ii) synthesize existing literature on major research themes, including modified biochar synthesis and its role in remediating contaminated environmental matrices, and (iii) expand the assessment of
  • . This underscores the necessity of interdisciplinary research integrating material science, agriculture, and microbiology in biochar–MP–plant interactions. Three primary research trajectories emerge from the keyword analysis: Investigating how different biochar synthesis methods influence
  • removal efficiency in wastewater treatment applications. Biochar synthesis techniques and functional optimization Biochar synthesis The synthesis methods for biochar, as illustrated in Figure 4, encompass traditional hydrolysis techniques and modified approaches utilizing materials such as magnetic
PDF
Album
Supp Info
Review
Published 21 Aug 2025

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination

  • Lei Wang,
  • Shizhe Li,
  • Kexin Xu,
  • Wenjun Li,
  • Ying Li and
  • Gang Liu

Beilstein J. Nanotechnol. 2025, 16, 1380–1391, doi:10.3762/bjnano.16.100

Graphical Abstract
  • Lei Wang Shizhe Li Kexin Xu Wenjun Li Ying Li Gang Liu Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People’s Republic of China Jilin Science and Technology Innovation Center of Green Synthesis and New Materials Research and
  • lifespan of the membranes. The widely used antimicrobial nanoparticles can be categorized based on their composition and properties as follows: metallic nanoparticles, carbon-based nanomaterials, oxide nanoparticles, and composite nanomaterials. Zheng’s group used an in situ synthesis method to embed AgNPs
  • into polyacrylonitrile (PAN) nanofibers, the fabricated Ag/PAN-TFN FO membrane demonstrated excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with improved water flux and salt rejection. The in situ synthesis method ensures a uniform distribution of AgNPs within the
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • , antibiotics can bind to multiple sites in the cell wall peptidoglycans (PGNs), resulting in inhibition of PGN synthesis, perturbation of the cell membrane integrity and cell death [46][47]. In Gram-negative bacteria, lipopolysaccharides interact electrostatically with positively charged antibiotics [48] and
  • during synthesis, making them adaptable for different drug delivery needs [59][60][61]. Surface modifications, such as the incorporation of polyethylene glycol (PEG) or specific targeting ligands, are commonly used to enhance liposome circulation time and promote targeted drug delivery. These
  • that the pore size can be precisely controlled during synthesis, MSiNPs are widely applied for delivering drugs to targeted sites, particularly in cancer and infectious diseases [88][89]. In addition, MSiNPs can be further enhanced by surface modifications, such as the attachment of polyethyleneimine
PDF
Album
Review
Published 15 Aug 2025

Ferroptosis induction by engineered liposomes for enhanced tumor therapy

  • Alireza Ghasempour,
  • Mohammad Amin Tokallou,
  • Mohammad Reza Naderi Allaf,
  • Mohsen Moradi,
  • Hamideh Dehghan,
  • Mahsa Sedighi,
  • Mohammad-Ali Shahbazi and
  • Fahimeh Lavi Arab

Beilstein J. Nanotechnol. 2025, 16, 1325–1349, doi:10.3762/bjnano.16.97

Graphical Abstract
  • in peroxisomes serve as substrates for lipid peroxidation. Clear-cell renal cell carcinoma (ccRCC) cells show elevated levels of PUFA-ePLs, likely due to their increased expression of alkylglycerone phosphate synthase (AGPS, an essential enzyme in the synthesis of PUFA-ePLs), which makes them
  • susceptible to ferroptosis [84][85]. In small-cell lung cancer (SCLC), SCLC cells that are non-neuroendocrine exhibit significantly higher sensitivity to ferroptosis compared to neuroendocrine SCLC cells, which can be attributed in part to the overexpression of ether phospholipids (ePLs) synthesis enzymes in
  • [109]. The synthesis and characterization of liposomes are crucial steps to ensure their efficacy and safety as drug delivery systems [110]. 3.1 Design and engineering of liposomes Numerous liposome preparation methods affect their properties, including size, layer structure, and encapsulation
PDF
Album
Review
Published 14 Aug 2025

Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos

  • Vladimir Pimonov,
  • Said Tahir and
  • Vincent Jourdain

Beilstein J. Nanotechnol. 2025, 16, 1316–1324, doi:10.3762/bjnano.16.96

Graphical Abstract
  • . However, the widespread application of CNTs is hindered by the lack of control over their structure during growth. Therefore, developing highly selective synthesis methods is crucial for advancing CNT-based devices. This requires a deep understanding of the relationship between nanotube structure and
  • videos acquired under a range of synthesis pressures and temperatures. This statistic is an order of magnitude larger than any other study on the growth kinetics of individual carbon nanotubes realized using other methods [30][31]. This large dataset provided unprecedented statistical insight into CNT
  • growth kinetics, revealing complex behaviors such as intermittent switching between growth, pause, and etching modes, even under nominally constant synthesis conditions [20]. These observations, further supported by complementary Raman spectroscopy, served as a foundation for the development of a new
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2025

Enhancing the photoelectrochemical performance of BiOI-derived BiVO4 films by controlled-intensity current electrodeposition

  • Huu Phuc Dang,
  • Khanh Quang Nguyen,
  • Nguyen Thi Mai Tho and
  • Tran Le

Beilstein J. Nanotechnol. 2025, 16, 1289–1301, doi:10.3762/bjnano.16.94

Graphical Abstract
  • charge carriers, which severely restrict its PEC performance [10][11][12]. Various strategies have been explored to overcome these challenges and optimize the structural, electronic, and surface properties of BiVO4 [13][14]. Hydrothermal synthesis has been used to produce highly crystalline BiVO4 films
  • synthesis parameters and PEC activity, while presenting a scalable and reproducible route for fabricating high-performance BiVO4 photoanodes. Experimental Material Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, 99.9%, Sigma-Aldrich) and vanadyl acetylacetonate (VO(acac)2, 98%, Sigma-Aldrich) were used as Bi
  • ) was benchmarked against similar studies employing hydrothermal synthesis, direct electrodeposition, and BiOI-derived conversion methods. As summarized in Table 2, our sample achieved a photocurrent density of 1.2 mA·cm−2 at 1.23 V vs RHE, which is comparable to or better than the values reported for
PDF
Album
Full Research Paper
Published 07 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • surface acts as scaffold for synthesis of nanoparticles [76]. The thiol groups are protonated at neutral pH and can entrap Au(III) ions. When the pH is changed to basic (≈12), Au(III) is reduced to Au and gold nanoparticles are formed [77]. Synthesis of albumin-templated nanomaterials depends upon many
  • structure of protein, and reducible disulfide groups [78][79][80]. 1.3.2 Bovine serum albumin. Bovine serum albumin (BSA) is widely used in biomedical applications such as supplemental growth media and protein standards. BSA was used as a template for the synthesis of organic–inorganic hybrid nanoparticles
PDF
Album
Review
Published 05 Aug 2025

Functional bio-packaging enhanced with nanocellulose from rice straw and cinnamon essential oil Pickering emulsion for fruit preservation

  • Tuyen B. Ly,
  • Duong D. T. Nguyen,
  • Hieu D. Nguyen,
  • Yen T. H. Nguyen,
  • Bup T. A. Bui,
  • Kien A. Le and
  • Phung K. Le

Beilstein J. Nanotechnol. 2025, 16, 1234–1245, doi:10.3762/bjnano.16.91

Graphical Abstract
  • life of strawberries to 21 days, compared to 11 days for unwrapped samples, therefore highlighting the potential of combining renewable materials and natural functional additives to create scalable, eco-friendly packaging solutions. Experimental Materials Rice straw used for NC synthesis was provided
  • alcohol (PVA), and glycerin (C3H8O3), were obtained from commercial sources and used as received. Material synthesis Nanocellulose synthesis process Rice straw served as the source material for nanocellulose production. Following a previously established procedure [46], two alkaline pretreatment steps and
PDF
Album
Full Research Paper
Published 04 Aug 2025

Hydrogels and nanogels: effectiveness in dermal applications

  • Jéssica da Cruz Ludwig,
  • Diana Fortkamp Grigoletto,
  • Daniele Fernanda Renzi,
  • Wolf-Rainer Abraham,
  • Daniel de Paula and
  • Najeh Maissar Khalil

Beilstein J. Nanotechnol. 2025, 16, 1216–1233, doi:10.3762/bjnano.16.90

Graphical Abstract
  • synthesis. Among the antineoplastic agents, 5-fluorouracil (5-FU) is the classic and most widely tested drug to fight skin cancer. 5-FU is a chemotherapeutic agent analogous to pyrimidine. The metabolism of 5-FU blocks the methylation reaction of deoxyuridine acid to thymidyl acid, interfering with DNA
  • synthesis, and subsequently inhibiting the formation of RNA. The effects of reduction on DNA and RNA syntheses occur mostly in cells that proliferate more rapidly and therefore capture more 5-FU [216][217]. Among modern antimetabolite agents, capecitabine is the first-choice antineoplastic drug in contrast
PDF
Album
Review
Published 01 Aug 2025

Electronic and optical properties of chloropicrin adsorbed ZnS nanotubes: first principle analysis

  • Prakash Yadav,
  • Boddepalli SanthiBhushan and
  • Anurag Srivastava

Beilstein J. Nanotechnol. 2025, 16, 1184–1196, doi:10.3762/bjnano.16.87

Graphical Abstract
  • , which can be tailored through rational design. By precisely controlling their size, shape, synthesis conditions, and functionalization, nanomaterials can achieve extraordinary magnetic, electrical, optical, mechanical, sensing, anticancer, and photocatalytic properties that significantly differ from
  • composites with other materials, such as carbon nanotubes, to optimize performance [26]. Furthermore, the flexible synthesis of ZnS NTs with controlled morphology and size allows for tailoring their sensing capabilities. External stimuli combined with machine learning can further enhance their sensitivity
PDF
Album
Full Research Paper
Published 25 Jul 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • , Synthesis and Real Structure, Faculty of Engineering, Christian-Albrechts University of Kiel, Kaiserstraße 2, 24143 Kiel, Germany Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141 Essen, Germany Kiel Nano, Surface and
  • unknown, particularly the underexplored preference of amorphous over crystalline structures warrants further investigation. Herein, we present a systematic study of laser-generated equimolar CrMnFeCoNi nanoparticles, focusing on structural differences, arising from varying pulse durations during synthesis
  • on density functional theory calculations of binding energies and machine learning algorithms for an efficient catalyst design [15][17][19]. The synthesis of HEA NPs has been realized by many methods, including carbothermal shock synthesis (CTS) [20][21], chemical reduction [22][23], fast-moving bed
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Single-layer graphene oxide film grown on α-Al2O3(0001) for use as an adsorbent

  • Shiro Entani,
  • Mitsunori Honda,
  • Masaru Takizawa and
  • Makoto Kohda

Beilstein J. Nanotechnol. 2025, 16, 1082–1087, doi:10.3762/bjnano.16.79

Graphical Abstract
  • -Al2O3(0001) can minimize peeling off of SLG from the α-Al2O3(0001) substrate following the oxidation process [18]. This allows us to obtain a large-area SLGO film, which can then be subjected to evaluation of the adsorption properties. Subsequent to the synthesis of SLGO/α-Al2O3(0001), further studies
  • capacity. Conclusion In this study, the synthesis of the large-area SLGO film was accomplished through the oxidation of CVD-grown SLG/α-Al2O3(0001). We found that the change in the electronic state from graphene to GO is attributed to oxidation. This was accompanied by the decrease of the π*(C=C) state and
PDF
Album
Full Research Paper
Published 10 Jul 2025

Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts

  • Sevin Adiguzel,
  • Nilay Cicek,
  • Zehra Cobandede,
  • Feray B. Misirlioglu,
  • Hulya Yilmaz and
  • Mustafa Culha

Beilstein J. Nanotechnol. 2025, 16, 1068–1081, doi:10.3762/bjnano.16.78

Graphical Abstract
  • phases exhibit ferroelectric properties, except for the cubic crystalline phase [23]. The size and crystal structure of BaTiO3 can vary based on the synthesis method. Notably, BaTiO3 holds promise as a bone-like graft and as a nano–bio interface, thanks to its excellent cytocompatibility and its positive
  • such as low synthesis scalability, unavoidable defects, and inhomogeneity. Producing high-quality hBNs with controlled layer numbers depends heavily on precursor selection, ambient gas conditions, and substrate of choice [37]. Emerging solutions include both top-down (mechanical and chemical
  • exfoliation) and bottom-up (chemical or physical atom assembly) synthesis methods, with chemical vapor deposition (CVD) standing out as a promising approach for large-area production [38]. This study aims to investigate novel, noninvasive stimulation of osteoblasts using commercial BaTiO3 and CVD-synthesized
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • the synthesis of covalent organic frameworks via polymer chemistry [70][71][72][73][74]. In particular, some thin-film techniques based on interface science are useful for the deliberate and rational assembly of ordered aggregated membrane structures. This is exemplified by the development of methods
  • substantial history of polymer synthesis and development, and chemical design is also a viable avenue of research [250][251][252][253][254]. Additionally, a range of biopolymers can be derived from natural sources. Moreover, techniques such as LbL assembly can be employed to organize polymers and a range of
  • -initiated one-by-one electrochemical addition and assembly of bifunctional monomers with electroactive redox units under alternating positive and negative potentials (Figure 11) [263]. The synthesis of uniaxial end-on conjugated metallopolymers in centimeter-sized domains was successfully achieved. SAMs of
PDF
Album
Review
Published 04 Jul 2025

A calix[4]arene-based supramolecular nanoassembly targeting cancer cells and triggering the release of nitric oxide with green light

  • Cristina Parisi,
  • Loredana Ferreri,
  • Tassia J. Martins,
  • Francesca Laneri,
  • Samantha Sollima,
  • Antonina Azzolina,
  • Antonella Cusimano,
  • Nicola D’Antona,
  • Grazia M. L. Consoli and
  • Salvatore Sortino

Beilstein J. Nanotechnol. 2025, 16, 1003–1013, doi:10.3762/bjnano.16.75

Graphical Abstract
  • purpose, we report the design and synthesis of the cationic calix[4]arene 1 and its supramolecular nanoassembly with the blue-light-activatable nitroso-derivative NOPD 2 (Scheme 1). We show that (i) 1 self-assembles in water medium into nanoaggregates able to internalize into cancer cells selectively and
  • specifically target cancer cells overexpressing choline transporters and, after encapsulation of the NOPD 2, stimulate NO release through a green-light-triggered photosensitization process. Results and Discussion Design and synthesis Calix[4]arene 1 integrates four choline moieties at the upper rim of the
  • antenna to trigger the NO release from the hydrophobic NOPD 2. Compound 1 was prepared by a two-step synthesis according to Scheme 2 (see Supporting Information File 1 for details) starting from the known calix[4]arene derivative 1a [60]. In brief, compound 1a treated with chloroacetic acid provided
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2025
Other Beilstein-Institut Open Science Activities