Search results

Search for "photocatalytic" in Full Text gives 203 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • photocatalytic semiconductors. The local SPV is generally measured consecutively by Kelvin probe force microscopy (KPFM) in darkness and under illumination, in which thermal drift degrades spatial and energy resolutions. In this study, we propose the method of AC bias Kelvin probe force microscopy (AC-KPFM
  • . The tip was cleaned by Ar+ sputtering (0.8 keV, 5 × 10−7 Torr, 5 min) to remove the contaminants and the native oxide layer. We used a rutile TiO2(110) sample to demonstrate the AC-KPFM. TiO2 is one of the promising photocatalytic materials [38][39][40] and has been widely studied using AFM and KPFM
  • reactions (hours) [62][63][64]. Particularly for photocatalytic semiconductors, AC-KPFM would be an indispensable tool for detecting the fast SPV distribution related to charge redistribution (microseconds to milliseconds) because SPV measured with classical KFPM is attributed to both charge redistribution
PDF
Album
Full Research Paper
Published 25 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • enhances its photocatalytic activity, which becomes three times higher than that of the quasi-spherical brookite TiO2. The results demonstrated that the sodium-doped brookite NaxTi1−xO2 can be stable up to 500 °C. At 600°C, the sodium in the brookite precipitates in the form of Na2CO3, and above 700 °C
  • structure and produce microstructures such as the core–shell structure, local lattice distortion, interstitial atoms, and atomic vacancies, which are critical to its excellent photocatalytic activity. Keywords: brookite titanium dioxide; core–shell structure; photocatalytic activity; sodium doping; twins
  • increased due to its importance for photocatalytic application. Ohtani et al. reported that extra-fine brookite TiO2 exhibited good photocatalytic activity for redox reactions in aqueous propan-2-ol and silver sulfate solution [7]. Kobayashi et al. suggested that the photoactivity of brookite nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • combined with metal nanoparticles, resulting in enhanced photoactivity of Au-decorated ZnO nanocrystals for photoelectrochemical water splitting [9], improved photodetection performance of ZnO nanofibers decorated with Au NPs [10], or enhanced photocatalytic activity of ZnO doped with Au NPs [11]. Moreover
  • properties including a high refractive index, which can confine the excitation light in order to enhance the SERS effect, various types of tuneable morphologies that can be used in combination with noble metals, but also its biocompatibility, photocatalytic self-cleaning capability, and high chemical
  • milli-Q water to the freshly prepared Ag nanowire solution [55]. A higher photocatalytic activity was shown for the Ag–ZnO core–shell particles compared to ZnO alone under solar light irradiation. SERS applications of ZnO-based nanostructures SERS is a powerful technique with promising applications for
PDF
Album
Review
Published 27 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility
  • photocatalytic activity. Upon UV irradiation, the electrons in the valence band get excited to the conduction band, leading to the formation of electron–hole pairs and the generation of ROS. Subsequently, the generated holes (h+) convert water/hydroxide molecules to peroxide/hydroxyl radicals by oxidation. The
  • generated free electrons (e−) react with molecular oxygen to generate superoxide radicals by reduction. Several factors contribute to the photocatalytic performance of TiO2, such as the structural phase (anatase, brookite, or rutile), defects in the lattice, the degree of crystallinity, morphology
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been
  • 50% glycerol. 97% of the dye removal efficiency of the membrane was maintained even after five consecutive adsorption/desorption cycles [79]. Hou et al. added the photoactivity of TiO2 into a hybrid membrane of PVA, PAA, and carboxyl-functionalized GO to degrade organic dyes by photocatalytic
  • degradation. The membrane displayed an efficient photocatalytic capacity for MB, CR, and RhB [80]. Although TiO2 is abundant and inexpensive, it only converts to UV part of sunlight, which is only 5% of the solar energy. This makes the use of TiO2 impractical. To counter this drawback Liu and co-workers
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • received particular attention from the scientific community. The photocatalytic NOx oxidation will be an important contribution to mitigate climate change in the future. Existing review papers mainly focus on applying SnO2 materials for photocatalytic oxidation of pollutants in the water, while studies on
  • the decomposition of gas pollutants are still being developed. In addition, previous studies have shown that the photocatalytic activity regarding NOx decomposition of SnO2 and other materials depends on many factors, such as physical structure and band energies, surface and defect states, and
  • morphology. Recent studies have been focused on the modification of properties of SnO2 to increase the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation, surface engineering, heterojunction construction, and using co-catalysts, which will be thoroughly highlighted in this
PDF
Album
Review
Published 21 Jan 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • (Cd2+) to form a three-dimensional crystal of Cys/Cd nanorods. Then, upon the introduction of Na2S, the Cys/Cd template mediates the mineralization of cadmium sulfide (CdS) into a layered CdS quantum dot structure, finally making a simple bionic daylight antenna with sustainable photocatalytic
  • alcohol dehydrogenase may be incorporated into Cys microspheres, resulting in hybrid microspheres with photocatalytic and biocatalytic activities. In addition, Cys/Zn microspheres were modified with CO32−-doped ZnS nanocrystals by a hydrothermal treatment, and then glutamic acid dehydrogenase was
PDF
Album
Review
Published 12 Oct 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • quaternary CuNiCoS4 nanocrystals. The first study by Thompson is on the synthesis of CuNiCoS4 thiospinels [13]. The second is a study on the synthesis and photocatalytic hydrogen evolution, which was performed by our group [8]. In this study, the optical characterization results of the CuNiCoS4 nanocrystals
PDF
Album
Full Research Paper
Published 02 Sep 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • to the human body or the environment caused by other materials such as lead. In addition, Gopal et al. [48] pointed out that boron exhibits diamagnetic properties in B-doped anatase TiO2 nanoparticles and showed photocatalytic activity in the visible-light range. Magnetic MNRs were applied to the
  • chemical field, and preparation and characterization of B–TiO2 photocatalytic particles were carried out by using these diamagnetic nanoparticles. The research on magnetic nanoparticles will expand the application range of MNRs and promote the common development of different fields. Other nanoparticles
PDF
Album
Review
Published 19 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • be easily tuned via structural design. In addition, they are of light weight (i.e., mainly composed of C, N, O, and S). To improve the photocatalytic performance of CPs and better understand the catalytic mechanisms, many strategies with respect to material design have been proposed. These include
  • tunable bandgaps, high charge carrier mobility, and efficient intramolecular charge transfer. In this minireview, recent advances of D–A polymers in photocatalytic hydrogen evolution are summarized with a particular focus on modulating the optical and electronic properties of CPs by varying the acceptor
  • units. The challenges and prospects associated with D–A polymer-based photocatalysts are described as well. Keywords: π-conjugated polymeric photocatalysts; donor–acceptor junctions; nanostructure semiconductors; photocatalytic hydrogen production; Introduction To date, fossil fuels still are the
PDF
Album
Review
Published 30 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • , Poland 10.3762/bjnano.12.38 Abstract Chlorine is found to be a suitable element for the modification of polymeric carbon nitride properties towards an efficient visible-light photocatalytic activity. In this study, chlorine-doped polymeric carbon nitride (Cl-PCN) has been examined as a photocatalyst in
  • the hydrogen evolution reaction. The following aspects were found to enhance the photocatalytic efficiency of Cl-PCN: (i) unique location of Cl atoms at the interlayers of PCN instead of on its π-conjugated planes, (ii) slight bandgap narrowing, (iii) lower recombination rate of the electron–hole
  • pairs, (iv) improved photogenerated charge transport and separation, and (v) higher reducing ability of the photogenerated electrons. The above factors affected the 4.4-fold enhancement of the photocatalytic efficiency in hydrogen evolution in comparison to the pristine catalyst. Keywords: chlorine
PDF
Album
Full Research Paper
Published 19 May 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture. Keywords: biological effects; Bombyx mori; nanomaterials; nanotechnology; sericulture; Introduction Nanomaterials have unique optical, electronic, and photocatalytic
PDF
Album
Review
Published 12 Feb 2021

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • the core–shell nanostructure and yielded superior photocatalytic properties. Keywords: bandgap energy; core–shell; dye degradation; nickel phyllosilicate; photocatalysts; Introduction Textile dyes and organic compounds are major water pollutants, which create an environmental hazard to aquatic
  • brookite phases, the anatase phase has been extensively used for photocatalysis owing to its enhanced surface properties [7][8][9][10]. In a typical photocatalytic process, photons of energy greater than the bandgap energy of TiO2 excite electrons to the conduction band leaving holes in the valence band
  • , the electron–hole recombination can be inhibited by loading metals, such as Ni [12], V, Fe [13], Ag [14], and Cu–Ni [15], on the TiO2 surface, which accelerates the formation of hydroxyl radicals and, consequently, improves the photocatalytic activity of TiO2. In contrast, the doping of TiO2 with
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • applications has been limited due to their relatively large bandgaps along with their susceptibility to the fast recombination of photogenerated electron–hole pairs, leading to inefficient photocatalytic activity under visible-light or solar irradiation [14][15][16][17][18]. Thus, the development of
  • photocatalytic activity [20]. Since the photocatalytic degradation of organic molecules using a metal oxide photocatalyst is a heterogeneous process, it is obvious that efficiency and overall catalytic performance are strongly correlated to the number of active sites on the catalyst surface area and, thus, to
  • analyze the BiFeO3 nanomaterial are powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible reflectance spectroscopy. Furthermore, we investigated the photocatalytic efficiency of this nanomaterial under visible light in the degradation of rhodamine B (RhB) as a model
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • less be classified as biotic, photocatalytic, or chemical degradation [27]. In aqueous media, chemical degradation of MP can result in either oxidation, isomerization or hydrolysis as some authors have suggested [11][12][13][14][28]. Oxidation of MP leads to the formation of methyl paraoxon, which is
  • bacteria are used for the degradation of MP, whereas photocatalytic degradation needs photons in the form of UV light and chemical degradation utilizes chemical species, such as copper(I) oxide (Cu2O) NPs in this work. Cu2O is widely known for its photocatalytic activity [29][30][31][32][33]. However
  • rising consensus on the damage that these reactive species, formed during the photocatalytic reactions, cause to cell membranes by peroxidation of the polyunsaturated phospholipids [34]. This leads to the subsequent loss of activity that relies on an intact membrane, and ultimately to the death of
PDF
Album
Full Research Paper
Published 12 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • antibacterial activity against Bacillus subtilis and Enterobacter aerogenes bacteria [109]. Titanium dioxide is also an inorganic material that is widely used in several products, including cosmetics and orthodontic composites, due to its excellent whitening, photocatalytic, and antimicrobial properties [131
  • ][132]. When the size of titanium dioxide is reduced to the nanoscale (TiO2 NPs), its photocatalytic property is greatly improved, generating more reactive oxygen species (ROS). ROS damages bacterial cells, DNA chains, and other cellular structures through oxidative stress. Therefore, the use of TiO2
  • photocatalytic, electrochemical, and catalytic properties. Furthermore, NiO NPs exhibit anti-inflammatory properties, generating interest in the biomedical field to use these NPs as antibiotics or in cancer treatments [116][133]. NiO NPs synthesized from Eucalyptus globulus leaf extract showed excellent
PDF
Album
Review
Published 25 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • the hybrid nature of these nanomaterials, the photothermal action can be synergistically coupled with an antibacterial ion release, antibiotic release or with photocatalytic reactions, leading to the generation of reactive oxygen species (i.e., photodynamic action). In this review we have briefly
PDF
Album
Review
Published 31 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • , antimicrobial and photocatalytic activities [3]. The main challenges of using the nanocomposites in the biomedical and textile-coating fields are to keep the synthesis processes at a low cost and to control for yield and stability issues. Currently, a number of techniques such as electron beam evaporation
  • nanocomposites may also have potential to be used in wound healing, photocatalytic and toxic dye removal applications. X-ray diffraction (XRD) patterns of pure TiO2 NPs and Ag–TiO2 nanocomposites at different ratios. SEM and EDS images of the synthesized splat-shaped nanoparticles: (a) pure TiO2 NPs, (b, c) Ag
PDF
Album
Full Research Paper
Published 29 Jul 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • solar energy harvesting in photovoltaic and photocatalytic applications owing to their extremely high visible-light absorption and tuned effective band gap. In this work, Ag-loaded TiO2 nanocolumn (Ag-TNC) arrays were fabricated based on anodic aluminum oxide (AAO) template by combining atomic layer
  • deposition (ALD) and vacuum evaporation. The effects of the Ag loading position and deposition thickness, and the morphology, structure and composition of Ag-deposited TNC arrays on its optical and photocatalytic properties were studied. The Ag-filled TiO2 (AFT) nanocolumn arrays exhibited higher removal
  • efficiency of methylene blue (MB) compared with Ag-coated TiO2 (ACT) nanocolumn arrays and pure TiO2 nanocolumns arrays. Both experimental and theoretical simulation results demonstrated that the enhanced photocatalytic performance of AFT nanocolumn arrays was attributed to the surface plasmon resonance (SPR
PDF
Album
Full Research Paper
Published 05 May 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • , and properties of the CNFMs was investigated, and the optimal process parameters were determined. Then, the CNFMs obtained with optimal process parameters were applied for the photocatalytic degradation of methyl orange. It was found that the CNFMs could be reused to degrade methyl orange at least
  • protection. Water pollution with organic dyes (such as congo red, methylene blue, and methyl orange) is becoming a major environmental problem. Therefore, water purification technologies, such as photocatalytic purification, electrochemical oxidation, membrane filtration, ozonation, and chlorination
  • flocculation, have attracted much attention recently [1][2][3]. The photocatalytic purification of water has the advantages of high efficiency, thoroughness, and no secondary pollution. Various refractory organic pollutants in water are thoroughly oxidized to non-toxic and less harmful substances. Thus
PDF
Album
Full Research Paper
Published 15 Apr 2020

Correction: Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2020, 11, 547–549, doi:10.3762/bjnano.11.43

Graphical Abstract
  • , complete rutile TiO2 phase was obtained [7]. It was previously reported that a mixture of anatase and rutile TiO2 nanoparticles has higher photocatalytic activity than pure anatase or pure rutile TiO2 nanoparticles under UV-light excitation [8]. Furthermore, it was shown that calcination of the
  • nanoparticles could increase the crystallinity of TiO2, which leads to a decrease in the photo-excited e− –h+ recombination, and thus, to an increase in the photocatalytic activity of TiO2 [9]. XRD patterns of (a) TiO2 nanoparticles, (b) 3 wt % Ag-doped TiO2 nanoparticles and (c) 7 wt % Ag-doped TiO2
PDF
Album
Original
Article
Supp Info
Correction
Published 03 Apr 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • force microscopy; (1 × 2) reconstruction; rutile; surface structure; titanium dioxide (TiO2); Introduction Titanium dioxide (TiO2) is a well-known photocatalyst and has been studied for applications in water splitting and the coating of materials [1]. To optimize the photocatalytic function, it is
  • not the periodic (1 × 2) surface is a symmetric structure. The determination of the surface structure is crucial to understand the surface phenomena, such as adsorption, absorption, and decomposition in photocatalytic reactions. In this study, we characterized the periodic structure of the rutile TiO2
  • believe information on the geometry of the rutile TiO2(110)-(1 × 2) reconstructed surface is useful for understanding surface phenomena, such as adsorption, absorption, and decomposition in photocatalytic reactions. Structural models of rutile TiO2(110)-(1 × 2) reconstructed surface: (a) Symmetric Ti2O3
PDF
Album
Full Research Paper
Published 10 Mar 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • nontoxic products. In this work, a CuO/tourmaline composite with zero-dimensional/two-dimensional (0D/2D) CuO architecture was successfully obtained via a facile hydrothermal process, and its photocatalytic activity was evaluated by the degradation of methylene blue (MB). Surface element valence state and
  • photocatalytic activity for the degradation of MB, which was ascribed to the increase in the quantity of the adsorption-photoreactive sites and the efficient utilization of the photoinduced charge carriers. This study provides a facile strategy for the construction of 0D/2D CuO structures and the design of
  • tourmaline-based functional composite photocatalysts for the treatment of organic contaminants in water. Keywords: 0D/2D CuO; organic contaminants; photocatalytic activity; photoinduced charge separation; tourmaline; Introduction Developing a novel semiconductor with excellent photoreactive activity toward
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • photocatalytic properties of TiO2 and the optical properties of plasmonic NPs [2]. This combination has been shown to extent the photocatalytic activity of TiO2, which is initially limited to UV light [8], to the visible or even to the NIR range of radiation [9]. Recent examples of the fabrication of plasmonic
  • obtained composite catalyst exhibits a synergistic effect between the anatase crystalline shell and the AuNPs as well as superb thermal and mechanical stability of the highly dispersed AuNPs. TiO2 HSs decorated with ultrasmall Ag nanocrystallites and exhibiting excellent photocatalytic properties were
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • photosensitizer for generating singlet oxygen and subsequent oxidative degradation of chemical warfare agents (CWAs). The high activity of NU-400 permits photocatalytic conversion of the 2-chloroethyl ethyl sulfide (CEES) mustard gas simulant into a benign sulfoxide derivative, in air, with less than 15 minutes
  • nerve gas agents [37][38][39][40][41][42]. Here, we describe the preparation of NU-400 [43], a zirconium-based MOF based on a judiciously chosen pyrene-based linker and utilized it as a photosensitizer for the efficient production of 1O2 and hence photocatalytic conversion of the sulfur mustard simulant
  • of producing singlet oxygen upon exposure to UV light [44][45], we anticipated that a MOF with isolated pyrene linkers would be a good candidate catalyst for the photocatalytic oxidation of sulfur mustard. The NU-400 material (Figure 1) was synthesized from the pyrene-2,7-dicarboxylic acid (Py-DCA
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019
Other Beilstein-Institut Open Science Activities