Search results

Search for "seeds" in Full Text gives 93 result(s) in Beilstein Journal of Nanotechnology.

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • Science), Theodor-Körner-Allee 16, 02763 Zittau, Germany Department of Earth and Environmental Science, University of Potsdam, 14476 Potsdam, Germany 10.3762/bjnano.10.11 Abstract A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination
  • matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. Keywords: 4-nitrophenol; Carica papaya seeds; clay; E. coli
  • to produce hybrid carbon/inorganic adsorbents [19][20]. We have previously described the synthesis and performance of a new hybrid material based on kaolinite and Carica papaya seeds for water treatment [1]. The material has several advantages over conventional processes: (i) it can be made from
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • . Butyl chloromethyl ether was synthesized according to a recipe already published [27]. Synthesis and surface modification of the spherical satellites Synthesis of the “pre-seeds” In a similar manner as described in [28], 100 mL of L-arginine aqueous solution (6 mM) were added into a 150 mL vial
  • phase undisturbed and the aqueous phase efficiently mixed (ca. 150 rpm). The reaction was stopped after three days. Silica concentrations were determined by gravimetric analysis. In a given volume, the number of silica seeds was calculated from the silica concentration and the particle average diameter
  • hydroxide and 10 mL of the aqueous dispersion of silica “pre-seeds” were successively introduced. Then, a calculated amount of TEOS (Table 2) was added at the rate of 0.5 mL·h−1. The mixture was stirred until 2 h after the end of the TEOS addition. The polydispersity index (PDI) given in Table 2 was
PDF
Album
Full Research Paper
Published 06 Dec 2018

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • -octadecene, OAm) [68], or in aqueous solutions. Depending on the additives and the reaction conditions, a variety of different shapes and sizes can be realized [66][67][69][70][71][72][73][74]. The generation of small silver nanoparticles (3–6 nm) is often performed only to generate seeds as a precursor for
PDF
Album
Full Research Paper
Published 29 Oct 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • be adjusted by heterogeneous nucleation of NPs on noble metal seeds [21][22]. Additionally, such bifunctional Fe3O4–Au NPs are potentially applicable for targeted drug delivery, enhanced hyperthermia, multimodal imaging and theranostics [8][23][24][25][26][27]. In this work, we present the first size
  • . Details regarding the synthesis are given in the Experimental section. In brief, Fe3O4 was grown on either in situ synthesized Au NPs (samples MNP-6 and MNP-15) or presynthesized Au seeds (samples MNP-25 and MNP-44). In addition, by using three different solvents (phenyl ether, benzyl ether, 1-octadecene
  • are pairwise connected and form hybrid NPs. The magnetite NPs formed using the in situ synthesized Au seeds have a spherical or poorly facetted shape (Figure 1A and 1B), while NPs obtained using presynthesized Au seeds are highly facetted (Figure 1C and 1D). The formation of highly facetted magnetite
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • target (99.95%). Due to collisions with Ar gas, cooling of the sputtered metal atoms takes place, leading to a supersaturated metal atom vapor. Collisions between the cooled metal atoms lead to nucleation and growth of initial clusters. Collisions between these initial cluster ‘seeds’ followed by
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds

  • Yuri P. Panarin,
  • Sithara P. Sreenilayam,
  • Jagdish K. Vij,
  • Anne Lehmann and
  • Carsten Tschierske

Beilstein J. Nanotechnol. 2018, 9, 1288–1296, doi:10.3762/bjnano.9.121

Graphical Abstract
  • layers being present in the nematic phase. Hence these are found to exist only at temperatures close to the nematic–smectic transition temperature. We surmise that the mechanism for the formation of cybotactic clusters in the bent-core LCs may differ from that in calamitics. In the former, the seeds of
  • above the isotropic–nematic transition temperature. The latter observation arises as seeds of cybotactic clusters are formed in the isotropic phase. Small clusters have also been observed by dynamic light scattering (DLS) [57]. The strength of this process is observed to increase with a reduction in
PDF
Album
Full Research Paper
Published 25 Apr 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • remove damaged tissue and to drop seeds and replicate [33]. Because plants cannot move, another mechanism has evolved to remove material. Plants use abscission, a process of weakening part of a stem to cause it to break. After deciding the location of the break, known as the abscission zone, the plant
  • functional coating, this process lets a plant simulate complex behavior without the need to move. To sum up, in order to remove material from itself or to drop seeds, plants have developed the ability to weaken stem and branches allowing them to break more easily. They accomplish this by protecting the part
PDF
Album
Review
Published 19 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • Figure 2b. The formation of such a ZnO sub-micrometer sphere suggests that the acetate ions from the precursor salt can be helpful ZnO seeds, which grow preferentially along the c-axis during the thermal treatment. Mono-ethanolamine (MEA) molecules not only act as a dispersant to prevent particle
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • transmission electron microscopy (TEM) images of Au NPs of 30 ± 5 nm diameter. Growth of Au NPs from 30 to 70 nm in diameter. Au NPs were synthesized by a seed-mediated process described in [48]. Immediately after the synthesis of the Au seeds (NPs of 15 nm diameter) the same reaction vessel was heated until
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Colloidal solution of silver nanoparticles for label-free colorimetric sensing of ammonia in aqueous solutions

  • Alessandro Buccolieri,
  • Antonio Serra,
  • Gabriele Giancane and
  • Daniela Manno

Beilstein J. Nanotechnol. 2018, 9, 499–507, doi:10.3762/bjnano.9.48

Graphical Abstract
  • detection of ammonia. The seeds of AgNPs have been prepared using an environmentally friendly hydrothermal method that uses sucralose as a stabilizer and glucose as a reducing agent. Briefly, 2 g of α-D-glucose and 2 g of sucralose were dissolved in 100 mL of ultrapure water. The solution is heated to 90 °C
  • , then 2.5 mL of an aqueous AgNO3 solution (c = 10−2 M) is added and the solution is maintained at this temperature for 5 min until it becomes pale yellow, which is indicative for the formation of AgNPs seeds. The colloidal solution with newly formed seeds is not stable. It is necessary to reduce the
PDF
Album
Full Research Paper
Published 09 Feb 2018

The rational design of a Au(I) precursor for focused electron beam induced deposition

  • Ali Marashdeh,
  • Thiadrik Tiesma,
  • Niels J. C. van Velzen,
  • Sjoerd Harder,
  • Remco W. A. Havenith,
  • Jeff T. M. De Hosson and
  • Willem F. van Dorp

Beilstein J. Nanotechnol. 2017, 8, 2753–2765, doi:10.3762/bjnano.8.274

Graphical Abstract
  • . High-purity Au deposits are of interest for many applications, such as the directed self-assembly of functional organic molecules [45], seeds for the growth of nanorods or nanotubes [46] and for plasmonics [47]. Two Au(I) compounds have been used for the deposition of pure gold. Utke et al
PDF
Album
Full Research Paper
Published 20 Dec 2017

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • depending on their binding affinity on different facets. They cover the nuclei as they form from the molecular precursor and prevent their aggregation [63]. Once the nuclei have grown into structurally well-defined seeds, the ligands can lead to preferential capping, hindering or promoting the growth of
  • combination with ascorbic acid and spherical silver seeds yielded rod-like structures in water by reduction of AgNO3. Jana, Gearheart, and Murphy suggested that CTAB forms micellar templates for the anisotropic growth of nanostructures [65]. Recent studies modified this picture and indicated that CTAB
  • passivates certain crystal faces (circumferential {100} planes), promoting the growth of nanorods along the ends. It depends on the structure of the initially formed seeds whether the growth occurs in one or two directions [66][67]. Silver nanobars were synthesized in ethylene glycol by the reduction of
PDF
Album
Review
Published 07 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • morphology, for example, as individual nanotubes or as CNT forests. Electron beam induced deposition (EBID) with subsequent autocatalytic growth (AG) was applied to lithographically produce catalytically active seeds for the localized growth of CNTs via chemical vapor deposition (CVD). With the precursor Fe
  • (CO)5 we were able to fabricate clean iron deposits via EBID and AG. After the proof-of-principle that these Fe deposits indeed act as seeds for the growth of CNTs, the influence of significant EBID/AG parameters on the deposit shape and finally the yield and morphology of the grown CNTs was
  • catalysts to synthesize well-defined CNTs with controllable morphology via CVD. The influence of the chemical composition and, in particular, of the fabrication parameters (i.e., electron dose and AG time) of Fe deposits were investigated with respect to their suitability and properties as seeds for
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  •  16c,d shows their counterparts deposited over the preseeded nylon-sputtered NPs. As expected, normal depositions produce compact coatings with the surface replicating the underlying structure (correspondingly, smooth blank Si or roughened NP seeds). Using GLAD, a columnar structure develops with
PDF
Album
Review
Published 25 Sep 2017

Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)

  • Dmytro Solonenko,
  • Ovidiu D. Gordan,
  • Guy Le Lay,
  • Dietrich R. T. Zahn and
  • Patrick Vogt

Beilstein J. Nanotechnol. 2017, 8, 1357–1365, doi:10.3762/bjnano.8.137

Graphical Abstract
  • temperatures (≤20 °C) leads to a similar result. It was recently suggested that impinging Si atoms at room temperature penetrate the Ag(111) surface, exchange with Ag atoms and act as seeds for the growth of recessed islands [29]. At the same time the released Ag atoms would form new Ag(111) terraces by a
PDF
Album
Full Research Paper
Published 03 Jul 2017

Optical response of heterogeneous polymer layers containing silver nanostructures

  • Miriam Carlberg,
  • Florent Pourcin,
  • Olivier Margeat,
  • Judikaël Le Rouzo,
  • Gérard Berginc,
  • Rose-Marie Sauvage,
  • Jörg Ackermann and
  • Ludovic Escoubas

Beilstein J. Nanotechnol. 2017, 8, 1065–1072, doi:10.3762/bjnano.8.108

Graphical Abstract
  • synthesized, the nanospheres and nanoprisms were at first dispersed in water. The growth of the nanoprisms was fulfilled in two steps: first spherical seeds with specific crystallographic defects were produced, and second, the growth took place on these defects to form nanoprisms [18][21][22]. The absorption
  • of the colloidal solutions of the first and second step, as seeds and prisms (Figure 1a), shows the characteristic plasmonic absorption peaks. The peaks 1 and 1’ were identified as the dipolar resonance of the nanoprisms and the nanospheres, respectively. The dipolar resonance of the nanoprisms
  • induced absorption between 540–750 nm. The width of this absorption was not due to the distribution in size of the NPs, but rather to the random orientation of the NPs in the solution. The nanoprisms, as synthetized, are visualized in TEM images (Figure 1b). The residual seeds are removed by successive
PDF
Album
Full Research Paper
Published 16 May 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • temperature was maintained at 27 °C unless mentioned otherwise. Synthesis In a typical procedure, cobalt chloride hexahydrate (CoCl2·6H2O) was reduced by sodium borohydride (NaBH4) to obtain spherical cobalt seed nanoparticles with an average size of 29 ± 3 nm. These seeds were washed with an ethanol–water
  • ambient conditions and under zero shear is discussed first. The critical steps for the formation of nanoplates are the twinning of seed crystals, the size reduction of particles and their controlled assembly to form two-dimensional nanoplates. The cobalt seeds are small spherical nanoparticles of ca. 30
  • –50 nm that show no surface defects or faults (Figure S2, Supporting Information File 1). A mixed population of twinned and un-twinned spherical nanoparticles with an average particle of ca. 15 nm is obtained (Figure 3a) when these seeds are ultrasonicated followed by the instantaneous addition of
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • Barthlott studied the micro- and nanostructures on the surfaces of plant leaves, flowers, seeds and pollen during his Ph.D. thesis at the University of Heidelberg using one of the first scanning electron microscopes (SEMs) available for German botanists. His main interest in these years was plant
PDF
Editorial
Published 08 Feb 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • , the unique natural history of isolated rocky outcrops called inselbergs, or the global distribution of biodiversity), plant surfaces and especially the tremendous diversity of minute structures on leaves, fruits, seeds and other parts of plants represent a common thread through 40 years of scientific
  • microscopes in German botany and started to intensively study the fascinating world of micro- and nanostructures of leaves, flowers, seeds or pollen grains. Starting point was a distinct interest in systematics, i.e., the science of recording and arranging organisms according to their relation to each other
  • characteristic for distinct genera, families or higher-order groups. One of the first structures studied in detail were seeds [3][4][5][6][7][8]. Apart from the sole description of structures based on the surveys functional aspects of plants were always considered as well [3][6][9][10][11]. Soon, and even more
PDF
Album
Commentary
Published 08 Feb 2017

Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

  • Ana I. Ramos,
  • Pedro D. Vaz,
  • Susana S. Braga and
  • Artur M. S. Silva

Beilstein J. Nanotechnol. 2017, 8, 348–357, doi:10.3762/bjnano.8.37

Graphical Abstract
  • the seeds of the horse chestnut tree, Aesculus hippocastanum (Hippocastanaceae). It is a natural mixture of acylated triterpene glycosides. In early studies, the saponins present in aescin were divided into two forms, α-aescin and β-aescin, with distinct melting point, hemolytic index, specific
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2017

“Sticky invasion” – the physical properties of Plantago lanceolata L. seed mucilage

  • Agnieszka Kreitschitz,
  • Alexander Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1918–1927, doi:10.3762/bjnano.7.183

Graphical Abstract
  • , D-24118 Kiel, Germany 10.3762/bjnano.7.183 Abstract The mucilage envelope of seeds has various functions including the provision of different ways for the dispersal of diaspores. Chemical composition and water content of the mucilage yield particular adhesive and frictional properties in the
  • envelope that also influence the dispersal of seeds. To determine the physical properties of Plantago lanceolata seed mucilage we studied (1) composition, (2) desiccation, (3) adhesion, and (4) friction properties of the mucilage under different hydration conditions. We revealed the presence of cellulose
  • mucilage against loss from the seed surface. Keywords: adhesion; cellulose mucilage; desiccation; friction; Plantago lanceolata; Introduction The ability of seeds and fruits (diaspores) to form mucilage after hydration is known as myxospermy [1][2]. The mucilaginous diaspores are particularly
PDF
Album
Full Research Paper
Published 05 Dec 2016

Tunable longitudinal modes in extended silver nanoparticle assemblies

  • Serene S. Bayram,
  • Klas Lindfors and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2016, 7, 1219–1228, doi:10.3762/bjnano.7.113

Graphical Abstract
  • transparent in the entire visible region using Pd decahedra as seeds [37]. In Luo’s work, the longitudinal band was pushed to the near infra-red region with nanorods of aspect ratios greater than 3.9. This is due to the energy dampening as the plasmon oscillation travels a longer distance on the rod surface
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2016

Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

  • Refat Abdel-Hamid and
  • Emad F. Newair

Beilstein J. Nanotechnol. 2016, 7, 1104–1112, doi:10.3762/bjnano.7.103

Graphical Abstract
  • /s. Preparation of pomegranate juice sample and determination of total phenolic content The pomegranate juice was obtained by peeling the fruits by hand and the seeds were liquefied using a hand press. The obtained juice was filtered off through a Whatman filter paper (No. 1). An aliquot of 10.0 mL
PDF
Album
Full Research Paper
Published 29 Jul 2016

Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

  • Zhicheng Liu,
  • Lu Bai,
  • Guizhe Zhao and
  • Yaqing Liu

Beilstein J. Nanotechnol. 2016, 7, 1028–1032, doi:10.3762/bjnano.7.95

Graphical Abstract
  • be assembled onto polyelectrolyte multilayer films and act as seeds for the following NP growth [16]. The grown NP films were demonstrated to be stable and reproducible SERS substrates. In addition to assembling only one type of NPs, Zhang et al. fabricated bimetallic gold–silver multilayer films by
PDF
Album
Supp Info
Letter
Published 15 Jul 2016

Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

  • Majid K. Abyaneh,
  • Pietro Parisse and
  • Loredana Casalis

Beilstein J. Nanotechnol. 2016, 7, 809–816, doi:10.3762/bjnano.7.72

Graphical Abstract
  • direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer Mw and gold concentration on the formation of GNRs has been investigated and discussed. The polymer
  • nanowires (NWs) occurs directly on the surfaces using small metal nanoparticles as seeds to grow the NRs, similar to the direct growth of carbon nanotubes and semiconductor 1D nanostructures from catalytic seeds [5]. Direct growth of GNRs on surfaces has been reported in many publications [6][7][8]. Au seed
  • particles usually bond to the pre-functionalised surfaces using various chemical linkers [9][10]. The substrate is then immersed in a growth solution, which results in the growth of surface-bound seeds into 1D nanostructures, quite similar to seed-mediated growth in solution. Seed-mediated growth is one of
PDF
Album
Full Research Paper
Published 06 Jun 2016
Other Beilstein-Institut Open Science Activities