Search results

Search for "argon" in Full Text gives 343 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry

  • Elisabeth Hengge,
  • Eva-Maria Steyskal,
  • Rupert Bachler,
  • Alexander Dennig,
  • Bernd Nidetzky and
  • Roland Würschum

Beilstein J. Nanotechnol. 2019, 10, 2275–2279, doi:10.3762/bjnano.10.219

Graphical Abstract
  • water and the easy handling. The npAu substrate material was fabricated by electrochemically assisted dealloying of Ag75Au25. The alloy was prepared by arc melting, homogenized at 800 °C for 12 h under argon atmosphere, rolled to a sheet of 220 μm in thickness, annealed again at 600 °C for 1 h, and cut
PDF
Album
Letter
Published 18 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • -type cell (CR 2032) in an argon-filled glove box (O2 < 0.1 ppm, H2O < 0.1 ppm). The electrolyte was 1 M bis(trifluoromethane) sulfonimide lithium salt (LiTFSI) dissolved in a mixed solution of dimethyl ether (DME) and 1,3-dioxolane (DOL) (1:1, v/v) with 2 wt % LiNO3. The recharge properties and cyclic
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • ) precursors were used to obtain the FeS2 NCs. The iron precursor was dissolved with octadecylamine at 120 °C for 1 h under argon atmosphere. Sulfur was dissolved with diphenyl ether at 70 °C for 1 h under argon gas. Then sulfur/diphenyl ether solution was added to the iron-octadecylamine complex. The solution
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • the centre of the RTP tube furnace. The furnace was then evacuated to about 50 mTorr and flushed with argon gas to 13 Torr for three times. After this, the samples were heated in the temperature range of 200–300 °C at a heating rate of 5 °C·min−1 for 2 h. The Ni1−xCoxS2 powder was collected after the
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • suspensions were diluted with purified water to 0.25 mg/mL. The suspension was dripped on a filter (MF-Millipore™ membrane filter VSWP, 0.1 µm) and dried for 24 h in a desiccator. Afterwards, the membranes were sputtered with gold under argon atmosphere (SCD 040, BAL-TEC, Balzers, Liechtenstein). The SEM
PDF
Album
Full Research Paper
Published 29 Oct 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • using the SFEP method [74][75][76]. Briefly, a two-necked round-bottomed flask (RBF) equipped with a reflux condenser and an inlet for argon gas was filled with 50 mL of water. NIPAM (0.225 g; 1.98 × 10−3 mol) and the cross-linker BIS (0.025 g; 1.62 × 10−4 mol), were added to the RBF containing water
  • and stirred for 30 min. Due to the possibility of oxygen intercepting radicals and disrupting the polymerization process, argon gas was bubbled through the stirred solution for 30 min to remove any oxygen. Blanketed with argon, the mixture was heated to 70 °C in an oil bath and then KPS (0.111 g; 4.11
PDF
Album
Full Research Paper
Published 04 Oct 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • . Experimental The nickel thin films were deposited in a custom-built magnetron sputter chamber [50] with a base pressure of 4 × 10−6 Pa. For the deposition process, 32 sccm of argon of 99.999% purity was injected into the chamber as the working gas. The working gas pressure was kept at 0.6 Pa using a butterfly
PDF
Album
Full Research Paper
Published 20 Sep 2019

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • composition of the exhaust gas was analyzed by a mass spectrometer. The acid-induced gas release was carried out in a round-bottom flask purged with a flow of argon (100 mL·min−1) and connected to a BelCat-B catalyst analyzer (Bel Japan, Inc.) attached to a mass spectrometer (OmniStar GSD 320, Pfeiffer Vacuum
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • , the mixture of a metallic salt (HAuCl4 or AgNO3), NaBH4, and CYS (as described above) was stirred under argon in ultrapure water at room temperature for 90 minutes. The progress of the reaction was monitored by 1H NMR spectroscopy. Aliquots were taken from the reaction mixture at selected time points
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • oxidation, that is, moisture and oxygen (air), all experiments were carried out in a purified argon or nitrogen atmosphere by using standard Schlenk techniques. Samples were prepared and stored in an MBraun Glovebox. Solvents (acetonitrile, n-hexane, and methylene chloride) were dried by using an MBraun
  • (COD)2 was purchased from ABCR, stored at −4 °C and used without further purification. GaCp* was synthesized according to literature under strictly inert dry argon conditions [69]. The ionic liquid [BMIm][NTf2] was synthesized according to the literature by reacting 1-methylimidazole with 1
  • (Shimadzu GC2014, column Ultra2, crosslinked 5% PhMe silicone, 25 m × 0.2 mm × 11 mm). Preparation of nanoparticles in ionic liquid Syntheses of Ni/Ga nanoparticles were prepared in septum-sealed 10 mL CEM microwave-vials in a CEM Discover microwave under argon atmosphere. Ni(COD)2 and GaCp* were suspended
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • %) and Ti (99.9 wt %) in an arc furnace, followed by melt spinning under an argon-protected atmosphere. The Ti10Al90 alloy ribbons were immersed in a 2 M NaOH solution for 72 h to prepare nanoporous TiO2 particles at ambient temperature. The resulting powder was washed several times by using deionized
  • elements were calibrated using C 1s (284.5 eV) as a reference. The FTIR spectra of the samples were recorded on a Bruker VERTEX 80 infrared spectrometer. Electrochemical characterization The 2032-type coin-cells were assembled in an argon-filled glove box (MBraun). In a half-cell configuration, Li metal
PDF
Album
Full Research Paper
Published 19 Aug 2019

Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells

  • Hannah Onafuye,
  • Sebastian Pieper,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Klaus Langer and
  • Martin Michaelis

Beilstein J. Nanotechnol. 2019, 10, 1707–1715, doi:10.3762/bjnano.10.166

Graphical Abstract
  • (IsoporeTM membrane filter, Merck Millipore, Darmstadt, Germany) and dried overnight in a desiccator. Afterwards, the membrane filter was sputtered with gold (Sputter SCD 040, BALTEC, Liechtenstein) under argon atmosphere. SEM was performed on a CamScan CS4 microscope (Cambridge Scanning Company, Cambridge
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • samples were analyzed using a focused (30–400 µm spot size), monochromatic Al Kα X-ray source. The Kα charge compensation system was employed during the experiment, using electrons of 8 eV energy and low-energy argon ions to prevent any localized charge build-up. The spectra were fitted with one or more
PDF
Album
Full Research Paper
Published 13 Aug 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • ) with a Moticam camera and the software Motic Images Plus at 100, 400, and 1,000-fold magnification. SEM was performed at 10,000-fold magnification using a Zeiss DSM950 (Carl Zeiss AG, Germany) instrument. The samples were sputter-coated with gold–palladium in an argon atmosphere at 15–20 kV at 0.05
PDF
Album
Full Research Paper
Published 08 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • the activation and doping reagents, the mixture was then milled in the same ball mill and vessel for 30 min and at a rotation speed of 800 rpm. The resulting polymer was pyrolyzed for one hour in argon at 800 °C with a heating rate of 150 °C·h−1 and afterwards purified with diluted HCl and water
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • annealed stepwise in an argon atmosphere at 220 °C (2 h, heating rate 1 K/min), 600 °C (2 h, heating rate 1 K/min), and finally at 1150 °C (6 h, heating rate 2 K/min). The obtained amorphous SiC was additionally annealed using the spark plasma sintering (SPS) method on a Spark plasma sintering system
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • Pa. Subsequently, the working gases (i.e., high purity argon and oxygen) were introduced into the deposition chamber, and a power of 70 W was applied to the magnetron. The ITO thin films were obtained at room temperature at a pressure of 6.67 × 10−1 Pa and a deposition rate of 9.6 nm/min. The
  • deposition pressure, argon and oxygen flow rates and the applied electrical current were kept constant during each deposition. More specifically, the deposition parameters and the studied sample characteristics are summarized in Table 1. The predefined thickness values (230 nm, 300 nm, 370 nm) for the ITO
PDF
Album
Full Research Paper
Published 25 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • cut into round disks with a diameter of 18 mm (254.5 mm2). They were directly used as an anode in ECC-PAT-Core (EL-Cell) battery test cells assembled in an argon-filled glove box using lithium metal both as the counter and reference electrode and an EL-CELL ECC1-01-0011-A/L glass fiber membrane as a
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • deposition can be seen below in Figure 3. Materials and methods Precursors for the deposition were prepared in an argon-filled moisture-free glovebox, and then handled within a nitrogen-filled Schlenk line. Dry ether (ROTIPURAN 99.5%, p.a., lump), used as the primary solvent, was further dried with pure
  • , contamination was avoided as much as reasonably possible. Measures for safe handling of n-butyllithium Due to the pyrophoric nature of n-butyllithium these safety procedures were followed. (i) The n-butyllithium solution was handled in an argon-filled glovebox, set up specifically for precursor handling. (ii
  • calibration routine and the internal Au, Ag and Cu standards supplied with the K-Alpha system. Argon etching was done with ion gun (1.4 µA of 2 keV Ar+ ions over 8 mm2). The samples indented to be used in XPS and Auger were coated with an additional layer of SiO2 inside of the deposition chamber. This
PDF
Album
Full Research Paper
Published 18 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • generated in the analyzer. The work function of the sample was calculated as WF = hν Ecut-off, where Ecut-off was determined from the intersection of the linear extrapolation of the secondary-electron cut-off (SECO) with the background. All samples were sputtered with argon ions using a scanning focused ion
  • beam source in order to remove surface contaminants. A monoatomic argon ion source was utilized with energy of 2 keV, ion current 10 µA, raster area 1 × 1 mm2 and sputtering time 30 s. Results and Discussion Separated metal nanoparticles on the substrate In TE materials the NIs applicable for an
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • characterization SnO2 nanowire synthesis The gas transport method based on the vapor–liquid–solid (VLS) mechanism was used for the synthesis of SnO2 nanowires. Argon saturated with water vapor served as the transport medium. Water was used as a mild oxidant of metallic tin in the following reaction: The formation
  • reaction as Metallic tin forms on the surface nanodrops, dissolving tin dioxide and the products of the incomplete oxidation of tin (SnO, Sn2O3, Sn3O4) from the argon flow. This dissolution leads finally to the saturation of tin with tin dioxide that is stable at high temperature. After this saturation
PDF
Album
Full Research Paper
Published 08 Jul 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • ionic liquid was purchased from Solvionic, and the other chemicals were purchased from Sigma-Aldrich. All operations were carried out under argon atmosphere using standard Schlenk techniques or in an MBraun glovebox. For comparison purpose, the commercial catalyst Pt3Co/CB consists of 6 wt % Co, 46.7 wt
  • at 650 °C on a Fe/Al2O3 catalyst in a vertical oven to produce CNTs and N-CNTs. First, the catalyst was reduced under argon/hydrogen (Ar/H2 (1.5/1): 375 mL·min−1) during 30 min at 650 °C. Undoped structures (called CNTs) were prepared from ethylene/H2 (375 mL·min−1 (1.5/1)) mixtures, N-doped
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • of 3 µL diluted PLGA NP suspension (0.2 mg/mL) was applied on a 0.1 µm membrane filter (IsoporeTM membrane filter, Merck Millipore, Darmstadt, Germany) and dried overnight in a desiccator. Afterwards, the membrane filter was sputtered with gold (Sputter SCD 040, BALTEC, Liechtenstein) under argon
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • target located opposite to the substrate. Deposition is typically performed in vacuum [20] or argon atmosphere [19] and by the change of parameters such as laser wavelength, pulse duration or laser fluence it is possible to modify the structure of the fabricated nanoislands. Until now, gold and silver
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019
Other Beilstein-Institut Open Science Activities