Search results

Search for "catalysts" in Full Text gives 306 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • light using different catalysts. Kinetics of the photocatalytic degradation of RhB using different catalysts. Effect of catalyst concentration on the degradation of RhB. Evaluation of photocatalytic stability and reusability of 5.5 nm BiFeO3 NP in a total of five cycles. Photocatalytic degradation of
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • catalysts is highly desirable for practical applications in lithium–oxygen batteries. Herein, a heterostructure of NiFe and NiCx inside of N-doped carbon (NiCx-NiFe-NC) derived from bimetallic Prussian blue supported on biochar was developed as a novel self-standing cathode for lithium–oxygen batteries. The
  • batteries [7][8][9][10]). In order to meet the requirements for efficient catalysts in practical applications, platinum group metal (PGM)-based catalysts are currently used as principal catalysts to reduce the overpotential of ORR and OER due to their slow kinetics [11][12][13]. The high cost, poor
  • poisoning tolerance, and scarcity of PGM-based ORR and OER catalysts significantly impede their application in energy storage and conversion devices at a large scale [14][15]. Therefore, there is an urgent and high demand for the development of alternatives to these PGM-based catalysts, at low cost and with
PDF
Album
Full Research Paper
Published 02 Dec 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • formed as a result of these interactions can be catalysts for new chemical reactions. This leads to a change in the original state of the breath, which may cause false-positive or false-negative results in medical diagnosis [27][28]. This problem has motivated the development of an alternative approach
PDF
Album
Full Research Paper
Published 28 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • dominant mechanism [13]. This work presents the integration of the MACE process at the wafer level using several metal nanoparticles as catalysts for the reduction process (Equation 1). The aim is to generate a high aspect ratio template of silicon. This template has to be fully integrable into a common
PDF
Album
Full Research Paper
Published 23 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • Abstract Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The
  • commercial production of fuel cell catalysts, especially the scarcity of noble metals and the insufficient electrochemical long-term stability. Even though the surface-to-volume ratio can be drastically increased by the use of nanoparticles instead of thin films, the amount of noble metal (usually platinum
  • well-adjusted under the given deposition conditions and, as a result, promising electrocatalysts are obtained. However, in order to assess how performance-critical properties such as CNW morphology, Pt-loading, and PSD of the resulting Pt/CNW catalysts can be influenced by specific process parameters
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • system due to material re-evaporation and Ostwald ripening describes the theoretically predicted and experimentally obtained results. Thus, dewetting phenomena of thin metal layers can be used to manufacture nanostructured devices. From this point of view, the application of gold droplets as catalysts to
  • chalcopyrites [11], or precursors for complex structures, such as nanowires [12]. Silicon, germanium and silicon oxide nanowires, for example, can be formed on different substrates by using metal catalysts in the form of tin, indium or gold nanodroplets [13][14][15]. Such nanometre-sized one-dimensional
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • active acetate instead of chloride axial ligands, the currents remained absent. Keywords: manganese; porphyrins; redox reactions; scanning tunneling microscopy; solid–liquid interface; Introduction Manganese(III) porphyrins are well-known catalysts for the epoxidation of alkenes [1][2][3][4]. The
PDF
Album
Full Research Paper
Published 24 Aug 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • significant cost of theses noble metals renders it necessary to minimize their loading and maintain optimal access of the electrolyte to every active site of their surface. Numerous studies have been dedicated to the development of such bimetallic catalysts in various compositions [11], using various coating
  • composition and pH value, temperature, or reference electrode), or even the choice of performance parameters (current density at a given overpotential, mass activity based on noble-metal loading, or overpotential for a given current), are usually different. Hence, often direct comparisons between catalysts of
  • and combining individual ALD cycles of two or more materials. The deposition of platinum and iridium as a binary catalyst can be realized at very low loadings in the range of micrograms per square centimeter [26]. Specifically, the applicability of ALD regarding Ir and bimetallic Pt/Ir catalysts, the
PDF
Album
Full Research Paper
Published 22 Jun 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • the oxygen reduction reaction (ORR) are two crucial processes, which require improvements through the design of efficient catalysts. Both OER and ORR suffer from slow kinetics of the four-electron transfer process [2][3]. Thus, highly efficient electrocatalysts with enhanced performance need to be
  • developed. Noble metals (Ir, Ru) and their oxides are the current commercial electrocatalysts for the OER, whereas Pt metal is the benchmark catalyst for the ORR [4][5]. Yet, all these catalysts have drawbacks such as scarcity and high cost, which are disadvantageous for their large-scale production and
  • application. Consequently, researchers are working on discovering and developing catalysts for OER and ORR that are metal-free or based on non-noble metals, stable and earth-abundant [6][7][8][9][10]. Among the transition-metal-based OER and ORR catalysts, Ni-containing catalysts are promising candidates [7
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • resonance (SPR), which leads to strongly absorbed visible light and enhancement of local electromagnetic fields [14]. Among the noble metals, Ag nanostructures have been widely used as catalysts because of their reasonable cost and broad plasmon resonance in the visible region [15][16]. At present, the
PDF
Album
Full Research Paper
Published 05 May 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • using cathodic co-electrodeposition and observed their photocatalytic performance. Fierro et al. [25] synthesized CuO–ZnO composite catalysts by temperature-programmed reduction and applied them in photocatalytic degradation. Nanocomposites loaded with metal oxide semiconductors have excellent optical
PDF
Album
Full Research Paper
Published 15 Apr 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • [10][11][12][13][14][15][16][17]. The resulting composites exhibit a double function, they support the metal nanoparticles and prevent their aggregation. For example, polystyrene microspheres have been decorated with silver nanoparticles and were used as catalysts, Raman-enhancing materials
PDF
Album
Full Research Paper
Published 14 Apr 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • synthesis, high conductivity and nitrogen content. Porous carbon materials, with high porosity and nitrogen content, have also been obtained from PANI. In other words, functional carbon, for catalysts and supercapacitors can be derived from high temperature carbonization of PANI, especially in the co
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • gaining tremendous attention due to its importance in many fields, including water treatment technologies. Oxidized graphitic carbon-based materials have been recently proposed as an alternative to metal-based catalysts in the electrochemical oxygen reduction reaction (ORR), and in this work we unravel
  • also demonstrated at low potential (0.358 mV vs RHE), yielding ≈34 mg/L peroxide with highly functionalized (≈23 atom %) graphene and ≈16 g/L with low functionalized (≈13 atom %) graphene, which is on par with the peroxide production using state-of-the-art precious-metal-based catalysts. Hence this
  • method opens a new scheme for the single-step large-scale production of functionalized carbon-based catalysts (yield ≈45% by weight) that have varying functionalities and can deliver peroxide via the electrochemical ORR process. Keywords: electrochemical oxygen reduction; functionalized carbon
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • in ca. 7 minutes, respectively. The present protocols for synthesizing rGO and N-rGO are simple and environmentally friendly as we do not use any harmful reagents, metal catalysts and solvents. Along with that, this method offers an inexpensive route with high yields to prepare rGO with a high
  • any solvents, metal catalysts, reagents and hazardous chemicals. Similarly, N-rGO nanosheets have also been synthesized using glycine as precursor. Results and Discussion The typical XRD patterns of rGO and N-rGO nanosheets are shown in Figure 1. The XRD pattern of the as-prepared rGO (Figure 1a
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • . Both rely on the oxygen reduction reaction (ORR). The best established ORR catalysts are so far based on Pt nanoparticles or Pt alloys. However, Pt is expensive and its stability under fuel-cell working conditions is limited. Therefore, alternative catalysts based on noble-metal-free, less expensive
  • and stable materials are highly needed. Metal-free carbon materials, single- or multi-doped with N, B, P, S, halogens, Si or Se, have turned out to be promising ORR catalysts [1][2][3][4][5][6]. N-doped carbon materials show promising ORR activities along with high electric conductivity, in addition
  • they can result in further advantages such as an improved tolerance towards impurities compared to Pt-based catalysts [1]. A wide variety of N-doped carbon materials is known from the literature, reaching from N-doped graphene and graphite, N-doped carbon nanotubes, carbon cages, carbon cups and carbon
PDF
Album
Full Research Paper
Published 02 Jan 2020

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • quantum yields and whose absorption wavelengths span the ultraviolet–visible spectrum. Moreover, singlet oxygen could be generated from homogenous [23] or heterogeneous catalysts, the latter of which will allow for the ease of separation at the end of the reaction, recyclability of the catalyst, wide
  • oxygen saturation. The photocatalytic activity of NU-400 enabled singlet oxygen-induced conversion of CEES to CEESO with a half-life of 13.5 minutes under air, a milestone in the development of MOFs as new, highly efficient catalysts for mustard gas degradation. NU-400 constituents: a) the pyrene-based
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • , Linnéstraße 5, 04103 Leipzig, Germany 10.3762/bjnano.10.200 Abstract In this contribution, the preparation of hierarchically structured ETS-10-based catalysts exhibiting notably higher activity in the conversion of triolein with methanol compared to microporous titanosilicate is presented. Triolein, together
  • maximum conversion of 83% after 24 h, the ETS-10-based catalyst reached 100% after 8 h, revealing its higher stability compared to CaO. The following characteristics of the catalysts were experimentally addressed – crystal structure (X-ray diffraction, transmission electron microscopy), crystal shape and
  • implementation on the industrial scale [5]. The preparation and application of different types of catalysts for homogeneous, heterogeneous, and even enzymatic transesterification processes have been extensively investigated [6]. However, the most commonly used commercial process for biodiesel production is the
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • for Ag–Pt and Ag–Rh compared to the monometallic constituents, and persisted at lower loading ratios and consecutive reduction cycles. The enhancement is attributed to the Rh and Pt nanoparticles forming antenna–reactor-type plasmonic catalysts with the Ag nanostructures. Keywords: Ag; antenna
  • of the reduction can be directly observed via UV–vis absorption spectroscopy. Ag–Rh/Pt heterostructures exhibited a significantly increased catalytic activity compared to the constituents. The observed increase is attributed to the heterostructures forming antenna–reactor-type plasmonic catalysts
  • . [18] and Zhang and co-workers [19]. The aim of the present study is to lay the foundation for future work and illuminate the potential efficacy of pulsed laser ablation as an effective method for the production of multicomponent plasmonic catalysts. The reported method possesses several inherent
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

The influence of porosity on nanoparticle formation in hierarchical aluminophosphates

  • Matthew E. Potter,
  • Lauren N. Riley,
  • Alice E. Oakley,
  • Panashe M. Mhembere,
  • June Callison and
  • Robert Raja

Beilstein J. Nanotechnol. 2019, 10, 1952–1957, doi:10.3762/bjnano.10.191

Graphical Abstract
  • : aluminophosphate; catalysis; hierarchical catalysts; nanoparticles; porosity; Findings The controlled synthetic design of metallic nanoparticles has generated significant interest in recent decades due to their implementation in a range of fields, including medicine [1], optics [2] and catalysis [3]. Given the
  • ) helps the systems maintain higher pore volumes and surface areas after nanoparticle inclusion. In principle this should translate into the hierarchical systems being improved catalysts with better diffusion. To probe the influence of the support on the deposited metal, a range of characterisation
  • complete reduction of the Au species, during the activation (calcination/reduction) process. We have thus shown that pore blockage can be minimised by immobilising metal nanoparticles onto hierarchical systems, allowing tailored zeotype catalysts to act as hosts through the inclusion of mesopores, with
PDF
Album
Supp Info
Letter
Published 25 Sep 2019

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  • Elvira Rozhina,
  • Ilnur Ishmukhametov,
  • Svetlana Batasheva,
  • Farida Akhatova and
  • Rawil Fakhrullin

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

Graphical Abstract
  • of various functional composite materials [26]. The anisotropic shape (hollow tubules having lengths from 300 nm to 1–2 µm, 50–70 nm diameter, and 20 nm lumen) and surface chemistry (outer surface of SiO2, inner surface of Al2O3) make these nanotubes ideal carriers for novel catalysts, polymer
PDF
Album
Letter
Published 04 Sep 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • presence of small quantities of alkynes significantly reduces the efficiency of catalysts in the subsequent polymerization reactions. Semihydrogenation reactions are an interesting way not only to remove but also to convert the alkynes to the respective polymerizable alkenes [25]. The addition of main
  • -group metals such as gallium to transition metals can significantly improve the catalytic selectivity towards semihydrogenation reactions, e.g., PdGa [26][27][28] and RhGa [29]. Intermetallic nanoparticles of nickel and gallium have been proven as efficient catalysts in semihydrogenation reactions
  • catalysts indicated that using Ni3Ga (α) yielded the highest activity with a turnover frequency (TOF) of 5.16 × 10−3 h−1 with the highest selectivities [10][30][32][42]. Bimetallic nanoparticles containing Ga are difficult to synthesize from Ga3+ precursors, because of the high negative redox potential of
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • value. This procedure and other protocols of synthesis together with the possibility to stabilize solids involving a large variety of metal ions have provided a large variety of LDH compounds of interest in numerous applications as adsorbents of anionic pollutants, catalysts, additive of polymers, as
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects

  • Hejin Jiang,
  • Huahua Fan,
  • Yuqian Jiang,
  • Li Zhang and
  • Minghua Liu

Beilstein J. Nanotechnol. 2019, 10, 1608–1617, doi:10.3762/bjnano.10.156

Graphical Abstract
  • value [29][30], solvents [31][32], temperature [33][34], and photo-irradiation [35][36]. Inverse chiral nanostructures have exhibited their tunable functions in the field of asymmetric catalysts [37][38][39], chiral separation [40][41], and circular polarized luminescence [42][43]. In this case, tunable
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • perturbations such as microwave and plasma irradiation [45][46][47][48][49][50][51]. Carbon nanotubes, representative one-dimensional objects, were produced using catalysts as well [52][53][54][55]. Recently, two-dimensional materials such as graphene and MoS2 nanosheets attracted the interests of researchers
  • systems fabricated with low-dimensional materials are actively investigated. For example, Lvov and co-workers reported the immobilization of small functional materials such as metal clusters and metal catalysts within one-dimensional halloysite clay nanotubes to make them work under appropriate protection
  • from external disturbances [82][83][84]. Zhong and Xu summarized, in their recent review, the preparation of metal nanoparticles for hydrogen generation from liquid chemical hydrides [85]. In their review, the usage of effective catalysts within low-dimensional cages of metal-organic frameworks was
PDF
Album
Review
Published 30 Jul 2019
Other Beilstein-Institut Open Science Activities