Search results

Search for "electric field" in Full Text gives 384 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A self-powered, flexible ultra-thin Si/ZnO nanowire photodetector as full-spectrum optical sensor and pyroelectric nanogenerator

  • Liang Chen,
  • Jianqi Dong,
  • Miao He and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1623–1630, doi:10.3762/bjnano.11.145

Graphical Abstract
  • wide bandgap (3.2 eV), which absorbs UV light and can be easily prepared [11][12]. A pyroelectric potential will be generated in ZnO when the temperature changes upon illumination. The internal electric field can effectively drive the flow of electrons through an external circuit, yielding a short
  • carrier diffusion, and a corresponding intrinsic electric field (Eb) is formed in the depletion zone (Figure 2, left). Under this circumstance, the electron diffusion current and drift current are equal in magnitude and opposite in direction in the heterojunction. Therefore, the net current flowing
  • -axis of the ZnO NWs (Figure 2, middle). Because the direction of the pyroelectric electric field (Epy) is the same as Eb and the barrier height decreases at the heterojunction interface due to the generation of a negative polarization potential, the total electric field in the depletion zone increases
PDF
Album
Full Research Paper
Published 27 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • intensity of the R6G signal derived from substrates coated with a 30 nm thick Au film was very low, as shown in Figure 4. Overall, the results show that the Raman intensity of R6G is affected by the thickness of the Au film. The effect of Au thickness on the electric field intensity has previously been
  • studied [45][46][47]. Zhang et al. [45] used a self-assembled method to fabricate PS nanosphere array substrates with Ag films of different thickness. The strongest electric field intensity enhancement was generated with a 10 nm thick Ag film. Using the AFM-based scratching method, Wang et al. [46
PDF
Album
Full Research Paper
Published 16 Oct 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • developed. In the last decade, the area of microfluidics, which is the field of science that studies the manipulation of minute volumes of fluids (i.e., from microliters to picoliters) [17], has experienced a significant growth in bioanalytical applications [17][18]. Electrokinetics (EK) and electric-field
  • use insulator-based EK devices, in which insulating structures distort the electric field distribution generating regions of higher electric field strength within the device [25]. These are simple devices usually made from a single substrate, which makes EK methods at the microscale promising for high
  • voltage necessary to trap each type of SPNP was obtained, it was then possible to derive the electric field magnitude at which each SPNP type would have zero velocity (i.e., EEEC). The previously developed technique [25] to calculate the eEEEC of particles relies on the fact that trapped particles (Figure
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • removed material [15]. This method is effective only when the surrounding area remains able to compensate the charge and the electric field is not so distorted as to prevent the removal of the generated secondary ions. Geological applications Light elements Some of the most important elements in the
PDF
Album
Full Research Paper
Published 02 Oct 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • the Teflon membrane is separated in the absence of an external force. There is a positive charge transfer from the conductive copper foil tape at the bottom of the TVB-TENG, to the conductive copper foil tape at the top, leading to an electric field equilibrium due to electrostatic induction. As a
PDF
Album
Full Research Paper
Published 11 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • calculations. Hamaker constants correspond to the susceptibility of particles to an electric field of very small length scales generated by the particles themselves [28]. For this reason, these constants are used to determine energy and force values in van der Waals interactions. A more detailed description of
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • , and BTO-PTh nanoparticles. Permittivity or dielectric constant (a), loss tangent (b), dielectric loss (c), and ac conductivity (d) are plotted as a function of the frequency. A plot of energy storage density as a function of the electric field strength (a), and the calculated maximum energy storage
PDF
Album
Full Research Paper
Published 10 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • molecular environments are unlikely to cause the LUMO energy variation because the molecular superstructure in the present case is regular. Moreover, a shift of the LUMO peak due to the electric field between tip and surface [50][51] can likewise be excluded due to the magnitude of the effect and the
PDF
Album
Full Research Paper
Published 03 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • can be obtained by rotating the prism while collecting optical spectra. The circle pattern is originating from the emission of the plasmonic oscillation along the tip shaft. This is in good agreement with the electric field distribution in the focus of a radially polarized laser beam, where the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • electrokinetic (ABEL) trap [10][11][12] was invented. In the ABEL trap, the Brownian motion of a particle is optically monitored, and then a feedback electric field is applied so that the resulting electrokinetic forces induce a drift that exactly cancels the Brownian motion. This can also be achieved by moving
  • the surrounding fluid via electroosmosis where an applied feedback electric field moves a layer of surface ions, which subsequently pulls the fluid, along with any suspended objects, by viscous drag. In such a manner, quantum dots in a liquid have been manipulated with nanometer precision [13]. Real
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • proximity of the NPs, which is higher for higher Au coverages (Table 1). The electric field between two nanoparticles is extraordinarily enhanced when the NPs are close to each other [7][40] and form so-called hot spots. To compare the enhancement capacity of the TiO2/Au samples, the enhancement factor (EF
PDF
Album
Full Research Paper
Published 14 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • exposed to microwaves due to the formation of high electric field gradients at sharp edges on the metal surfaces [12]. The generation of arcs might be the reason why microwave irradiation has not been used to generate different nanomaterials from metal particles. However, some studies show that the
  • contain rough surfaces or sharp edges. When electrically conducting rough surfaces are exposed to microwaves, electric fields distribute inhomogeneously along the surface of the conductor. At tips and sharp edges, very high electric field gradients occur, leading to the ionization of the material and the
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • operation of the waveguides at 785 nm for the transverse magnetic (TM) polarization. For TM polarization, the electric field vector of the waveguide mode is directed perpendicular to the plane of the waveguide (the x–y plane, as indicated in Figure 1). This polarization is conserved in the emitted beam
  • maximum obtainable value for the TM polarization, as a result of optimum constructive interference. For transverse electric (TE) polarization, for which the electric field vector of the beams is oriented in the x–y plane, the resulting light concentration is lower. In the simulations, the refractive
  • the electric field (per watt of power delivered to the waveguide mode) of the beams emitted into water and for waveguide thicknesses t = 50, 100 and 150 nm. The x-axis is the axis of the waveguide. While for t = 50 nm the profile is flattest (and thus the least divergent), the profile for t = 100 nm
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • field distribution of arrays with different structures at 457 and 320 nm. In order to further illustrate the effect of structural changes on the electric field distribution of arrays, the XY plane and the XZ plane are chosen to analyze the arrays. The XY plane chooses the cross section at 75 nm and the
  • XZ plane chooses the cross section at 0 nm. The structure of the model was established according to the morphology observed by SEM. As can be seen from Figure 8 (a1–4), the electric field of the TiO2 arrays is stronger under 320 nm illumination, and there is a strong electric field distribution
  • absorption of ultraviolet light by TiO2, and the electric field intensity between nanocolumns decreases obviously. Only under 457 nm light can a strong electric field distribution at the top of the array be observed, which is attributed to the absorption of visible light by the LSPR resonance of Ag. Figure 8
PDF
Album
Full Research Paper
Published 05 May 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • the capacity degradation of the samples [23]. Electrochemical strain microscopy (ESM) is a relatively new AFM contact mode, which probes ionic charges accumulated in a small volume under the AFM tip after application of an electric field by measuring the resulting surface strain [24][25][26]. It was
  • first experimentally introduced by Balke et al. [24][25]. Morozovksa et al. [26][27][28] provided the theoretical background. If an alternating electric field is applied, the ions located in the sample volume under the AFM tip are forced to oscillate, which generates strain due to concentration
  • increase or decrease of the ionic concentration in the probed volume due to the electric field. During accumulation of Li-ions with the dc-voltage pulse, due to the electric field driven migration, the ESM signal increases. Afterwards, when the dc-voltage is turned off, the ESM signal decreases due to the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • perpendicularly polarized beams yield, by averaging, the result for the unpolarized beam, according to the formula: where ETE and ETM are electric and magnetic fields obtained from simulations with TE and TM beam polarizations, respectively. For calculations of the electric field distribution, the shape of the
PDF
Album
Full Research Paper
Published 25 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • of the sample as those of an Ohmic material, where the carrier response to the electric field is “immediate”. However, many materials exhibit responses that depend on the timescales of the application of the electrical interactions (e.g., on the timescale of the contact time in our case). The
PDF
Album
Full Research Paper
Published 13 Mar 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • )(BO3)3V3W, where X: K+, Na+, Ca2+; Y: Li+, Fe2+, Mn2+, Mg2+, Fe3+, Al3+, Cr3+, V3+, Ti4+; Z: Fe3+, Al3+, Cr3+, V3+; T: Al3+, B3+, Si4+; B: B3+; V: OH−, O2−; W: OH−, F−, O2− [21]. The spontaneous permanent polarization provides tourmaline with an electric field of 106–107 V m−1 on its surface [22]. The
  • electric field can increase the separation of the photoinduced charge carriers [2][23][24]. Furthermore, tourmaline can augment the oxygen dissolved into water due to its infrared radiation effect [24][25], which contributes to accelerate the photocatalytic oxidation reactions. Tourmaline is a promising
  • functional mineral material for accepting the photogenerated e− due to its special electric field. Herein, we report the successful synthesis of the CuO/tourmaline composite photocatalyst with 0D/2D CuO geometric structure by a facile precipitation–hydrothermal process. This work firstly highlights a simple
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • electric-field-driven redistribution of only a small amount of highly mobile ionic species upon resistive switching. We investigate the memristive behavior of a so-far less explored representative of this class, the Ag/AgI material system in a point contact arrangement established by the conducting PtIr
  • solutions [1]. Two-terminal, non-volatile resistance-change memory devices (RRAMs) [2][3][4], the operation of which relies on controllable, electric-field-induced structural changes in an electronically insulating ionic conductor medium, offer a viable alternative to intrinsically overcome the above
PDF
Album
Full Research Paper
Published 08 Jan 2020

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • height of stub1 and its asymmetrical coupling area with the split-ring, as shown in Figure 7. Afterwards, for the convenience of the following analysis of cavity3, the electric field coupled into cavity3 is divided into up and down parts named Eup and Edown, as marked with red arrows along the split-ring
  • in Figure 7. When θ = 0°, as shown in Figure 7a, Eup and Edown are the mirror counterparts, which produced a typical destructive interference, resulting in low transmission. A similar phenomenon happens when θ = 180°. When θ is closer to 20°, the electric field is coupled to one end of cavity3, Eup
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • Mie scattering theory, investigated the optical response of the obtained Si/Au nanoparticles. The results of the study showed an increase of the local electric field and unidirectional light scattering with a high Purcell coefficient compared with a nanoparticle consisting only of gold. Another
PDF
Album
Full Research Paper
Published 13 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • solution on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multiple Ag nanoparticles on the surface of a plane and with multiple micro/nanostructures are studied with COMSOL software
  • plane. Compared with the other structures, more Ag nanoparticles are generated on the “fish scale” structures using the two parameters as shown in Figure 1c and Figure 1e. More Ag indicates that more nanoparticles are formed in the pyramidal cavities, and a stronger electric field is generated between
  • local electric field enhancement is caused when a single nanoparticle comes in contact with the sample and the “hot spots” are formed by multiple nanoparticles to improve the electric field intensity and local electromagnetic field. Zhang et al. [32] deposited a Ag film of 30 nm and a Au film of 10 nm
PDF
Album
Full Research Paper
Published 13 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • clockwise from 0° to −90°, a similar phenomenon is observed (Figure 5c). A new resonance peak 2 appears and gradually increases its amplitude. Meanwhile, peak 1 is gradually decreasing. We note that the line widths of peak 2 in Figure 5a and Figure 5b differ. The electric field distributions for peak 1 and
  • , (b) outer radius R. The inset shows the resonance wavelength λ0 as a function of radius r. Effective refraction index neff as a function of the wavelength at different ring widths W. The evolution of transmission spectra with angle ϕ varying (a) from 0° to 90°, and (c) from 0° to −90°. The electric
  • field distribution for peak I and II at (b) ϕ = 45° (810 nm and 760 nm), and (d) ϕ = −45° (819 nm and 761 nm). The other parameters are R = 155 nm, r = 55 nm, and the deviation distance d = 80 nm. The evolution of transmission spectra with angle ϕ. The deviation distance is (a) d = 40 nm and (b) d = 80
PDF
Album
Full Research Paper
Published 11 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • intensity (2.12% at 25 mW cm−2 and 9.03% at 5 mW cm−2), and it was concluded that the behavior was similar to amorphous Si solar cells [68]. In the case of amorphous Si solar cells, the decrease in FF at increasing light intensity was connected to the increasing electric field inside the solar cell [69
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019
Other Beilstein-Institut Open Science Activities