Search results

Search for "spatial distribution" in Full Text gives 113 result(s) in Beilstein Journal of Nanotechnology.

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • different wavelengths, a synergic effect was observed, which led to a greatly enhanced H2 generation yield. This is attributed to the rational spatial distribution of the three components (dye, TiO2, Pt), and the vectored transport of photogenerated electrons from the dye to the Pt particles via the TiO2
  • greatly enhanced activity for the H2 generation when the ErB and TiO2 are co-excited through the combination of two irradiation beams at different wavelengths. The enhancement is attributed to the rational spatial distribution of three components (ErB, TiO2, Pt), and the vectored transport of
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • complementary spectroscopic techniques and they suggested a dissociative electron attachment (DEA) as the dominating process to which both primary electrons and secondary electrons contribute [13]. However, a detailed picture of how the spatial distribution of cross-links evolves until a complete CNM has been
PDF
Album
Full Research Paper
Published 21 Feb 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • optical near-fields of nanostructures. Since the field enhancement can be quite large, light-induced local changes of the material can also be utilized to map the spatial distribution of the near-fields as demonstrated by Dickreuter et al. [4]. For this purpose, light-induced local changes of the material
PDF
Editorial
Published 19 Feb 2014

Simulation of electron transport during electron-beam-induced deposition of nanostructures

  • Francesc Salvat-Pujol,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2013, 4, 781–792, doi:10.3762/bjnano.4.89

Graphical Abstract
  • easily corrected by applying appropriate beam-deflection voltages. Nevertheless it is interesting per se to examine the spatial distribution of the charge deposition process induced by the incoming beam, if only to better delimit the spatial region that is probed and affected by the beam. Figure 12
PDF
Album
Full Research Paper
Published 22 Nov 2013

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • ” by Lumerical Inc. to simulate the spatial distribution of the electric field of a triangle and the energy dissipated during its illumination. To get realistic results, an AFM image of a gold triangle like the one in Figure 4 was used as a basis for generating the geometry of the simulation. This
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • minority (hydrophilic) phases have percolating network-like structures, although the spatial distribution of microdomains does not appear to visually conform to simple periodic shapes. The water network is, of course, not a static entity, but a dynamic system whose shape can change as the water molecules
PDF
Album
Full Research Paper
Published 26 Sep 2013

Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

  • Paul Kühler,
  • Daniel Puerto,
  • Mario Mosbacher,
  • Paul Leiderer,
  • Francisco Javier Garcia de Abajo,
  • Jan Siegel and
  • Javier Solis

Beilstein J. Nanotechnol. 2013, 4, 501–509, doi:10.3762/bjnano.4.59

Graphical Abstract
  • the wave vector of the scattered light) behaves like a spherical lens. A closer look at the spatial distribution of intensities reveals a fine structure with characteristic maxima and minima that cannot be predicted by a simple geometrical model and that depends on the complex interference of the
  • is above or below the melting threshold of polycrystalline GST. We have checked that the calculated spatial distribution of the near field is essentially the same for both Si and GST substrates. The comparison between the imprinted and calculated near field distribution shows an excellent agreement
PDF
Album
Full Research Paper
Published 04 Sep 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Barat Achinuq,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • triangle to the centre of the opposing base) is 100 nm. Resonances are found, which depend on the size of the antenna but also on the dielectric constants of the environment (substrate and cover layer). The spatial distribution of the enhancement factor in the region of the maximum (around 700 nm) for
PDF
Album
Full Research Paper
Published 14 May 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • damage and no etching were observed. Dispersed NPs with diameters close to 2–3 nm were formed at the tip of the tubes. In contrast, at the middle of the tube, NPs with diameters close to 3–5 nm or NPs clusters were observed (Figure 14). The NP spatial distribution depends on the defect density
PDF
Album
Review
Published 22 Feb 2013

Plasmonic oligomers in cylindrical vector light beams

  • Mario Hentschel,
  • Jens Dorfmüller,
  • Harald Giessen,
  • Sebastian Jäger,
  • Andreas M. Kern,
  • Kai Braun,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2013, 4, 57–65, doi:10.3762/bjnano.4.6

Graphical Abstract
  • resembling the high symmetry of the cluster itself. The strong enhancement, as well as the strong local fields, is proof that we indeed excite the cluster with its eigenpolarizations. Such near-field patterns, in strength as well as spatial distribution, are not obtainable upon linear polarized excitation
PDF
Album
Full Research Paper
Published 24 Jan 2013

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • atoms and molecules laterally on sample surfaces were quantified [34] and the lateral force field on graphite could be studied in detail [20]. Finally, three-dimensional force spectroscopy experiments performed in a liquid environment have revealed the spatial distribution of water molecules at a water
PDF
Album
Full Research Paper
Published 11 Sep 2012

Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies

  • Marcus Bleicher,
  • Lucas Burigo,
  • Marco Durante,
  • Maren Herrlitz,
  • Michael Krämer,
  • Igor Mishustin,
  • Iris Müller,
  • Francesco Natale,
  • Igor Pshenichnov,
  • Stefan Schramm,
  • Gisela Taucher-Scholz and
  • Cathrin Wälzlein

Beilstein J. Nanotechnol. 2012, 3, 556–563, doi:10.3762/bjnano.3.64

Graphical Abstract
  • particles with tissues. The MCHIT [5] based on the Geant4 toolkit was created in the Frankfurt Institute for Advanced Studies (FIAS) to study the propagation of therapeutic beams in extended media. MCHIT calculates the spatial distribution of energy deposited in a tissue-like phantom, taking into account
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2012

Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study

  • Berndt Koslowski,
  • Anna Tschetschetkin,
  • Norbert Maurer,
  • Elena Mena-Osteritz,
  • Peter Bäuerle and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 561–568, doi:10.3762/bjnano.2.60

Graphical Abstract
  • separation of the molecules from the surface of 0.315 nm [20]. Such a considerable difference requires an explanation. Typically one would argue in STM that a change of the density of states (DOS) or the barrier height, Φ, above a molecule changes the tip–sample separation. However, the spatial distribution
  • = +2.26 eV and a width of 0.71 eV, which corresponds to a lifetime of electrons in the LUMO of ~0.5 fs. The spatial distribution of electronic states at an energy E can be imaged by measuring the conductivity of the tunneling junction simultaneously with topography at a given bias Vt = E and a bias
  • HOMO, respectively. Also shown is a Lorentzian fitted (black curve) to the positive branch on the molecule (center 2.26 eV, width 0.71 eV corresponding to a lifetime of ~0.5 fs). (a) and (e) shape of single 3T molecule on Au(111) (2 × 2 × 0.15) nm3, (b) and (f) ∂VI maps showing the spatial distribution
PDF
Album
Full Research Paper
Published 09 Sep 2011
Other Beilstein-Institut Open Science Activities