Search results

Search for "cross section" in Full Text gives 512 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • with diameters of about 50 nm and oriented normally to a InP wafer, i.e., along the crystallographic [100] orientation, was obtained after anodic etching at elevated applied voltages [14]. High-aspect-ratio GaAs pillar arrays with triangular cross section were prepared by combining colloidal crystal
  • surface orientation, with an angle of approximately 109° between the pores. The pores tend to have a triangular cross section while the pore walls and tips exhibit a pronounced crystallographic anisotropy. A specific characteristic feature of crystallographically oriented pores is their ability to
  • shutter was used in the relaxation experiments. The signal from the source measure unit was fed to computer via IEEE-488 interface for further data processing. The measurements were performed at 300 K. SEM images in cross section of porous GaAs layers for three different conditions of anodization in 1.75
PDF
Album
Full Research Paper
Published 29 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • rectangular cross section between the waveguides, while the 16-waveguide device has a cylindrical fluidic microbath with a diameter of 15 μm. Using Lumerical’s FDTD solutions, we obtain the energy density U in the central part of these devices, assuming the beams are emitted in phase. The results are
  • with sample fluid. Among the devices, the diameter of the cylinder is in the range of 5–60 µm. For the 2-waveguide device, the microbath is shaped as a linear channel with a rectangular cross section (Figure 4a). For the microbath we face two issues, namely the entrapment of air bubbles during filling
  • scale indicating the energy density is the same. Main steps of the fabrication process of the multi-waveguide trapping and Raman devices based on Si3N4 waveguides. Under each cross section the step is mentioned. The cross section of step d) is at the chip edge, where the waveguide reaches a thickness of
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

A set of empirical equations describing the observed colours of metal–anodic aluminium oxide–Al nanostructures

  • Cristina V. Manzano,
  • Jakob J. Schwiedrzik,
  • Gerhard Bürki,
  • Laszlo Pethö,
  • Johann Michler and
  • Laetitia Philippe

Beilstein J. Nanotechnol. 2020, 11, 798–806, doi:10.3762/bjnano.11.64

Graphical Abstract
  • samples with 8 nm Cr sputtered onto these films. It should be noted that measuring the thickness of the thin films as well as obtaining accurate values is very difficult due to the roughness and large surface area (2.5 cm2 in diameter) of the AAO films. This can be seen in the FESEM images of the cross
  • section of an AAO film after FIB cutting (Figure S4, Supporting Information File 1). The x and y values calculated from the proposed model were plotted as a function of the x and y values from the reflectance measurements, in order to check the validity of the proposed model (Figure 5a). In order to
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • was broken by bending the samples prior to removal of Al and AAO, exposing the internal structure of the nanocolumn as shown in Figure 3. Figure 3a shows the method used to observe the cross section of the sample. Figure 3b is the cross section of the AAO template, and we find that there is no
  • coverage of the surface of the template. Figure 3c shows the cross section of a TNC sample. Comparing Figure 3b and 3c, we find that TiO2 perfectly covers the surface of AAO, the nanocolumn is a hollow structure, and the top hole still exists. As can be seen from Figure 3d, due to the low thickness of Ag
  • field distribution of arrays with different structures at 457 and 320 nm. In order to further illustrate the effect of structural changes on the electric field distribution of arrays, the XY plane and the XZ plane are chosen to analyze the arrays. The XY plane chooses the cross section at 75 nm and the
PDF
Album
Full Research Paper
Published 05 May 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • location of the point contact nor any reproducible production of point contacts. Nevertheless, quantized conductance plateaus as a function of time were still observed for these bow-tie structures during EM. It turned out that the existence of several grains in the cross section of these Ag structures is
  • planes. Secondly, due to its high directionality, EM thins one grain while depositing the material on an adjacent grain. Therefore, the local electrical resistance is determined by the contact area between the grain that is thinned and the adjacent grain that is taking up the material. Only this cross
  • section and its variation by EM is considered. Thus, deviations due to unknown step densities and local strain are ignored when considering only high-symmetry directions of the interface, as we do in the following. Figure 3 represents the FT of the conductance histogram in Figure 2 of bow-tie structures
PDF
Album
Full Research Paper
Published 22 Apr 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • grown on STO (green triangles), LAO (purple diamonds), and LSAT (dark cyan pentagons) substrates; (c) BTO/ LSMO bilayer with tLSMO = 20 nm (blue circles), 27 nm (green triangles) and 40 nm (black squares). Continuous red lines correspond to numerical fits. (a) Cross-section HAADF-STEM image for a BTO
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • (MBraun, O2 and H2O < 2 ppm) and washed with dimethylcarbonate (DMC, Sigma-Aldrich). Cross-section cuts were obtained with an unfocused argon beam cross-section polisher (Jeol, 19520-CCP). The transfer of samples was done inside a transfer vessel to avoid any contact with air. ESM measurements ESM
  • ]. Further information about the set-up with control experiments regarding the origin of the signal can be found in [34]. The ESM measurements were performed on micrometre-sized single particles of a cross-section of the electrodes cut as specified above. Results and Discussion Cell and cathode
  • characterization The ESM analysis was conducted inside of particles of the cross-sections of the fresh and aged cathodes. Two examples of the cross-section structure of the cathodes are given in Figure 1. In Figure 1a the fresh and in 1b the aged cathode cross-section is shown. The electrode consists of particles
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • extinction cross section. It can be up to 50 times larger than the geometrical cross section of the nanoparticle [6]. Ag nanoparticles are also interesting because of the position of the plasmon resonance. The LSPR wavelength maximum of small Ag nanoparticles with a diameter of 10 nm in air is around 420 nm
  • ), they consist of Ag. Detailed EDS analysis of a cross section of a nanoisland is presented in Figure 8c. As can be seen, a thin layer of natural SiO2, about 2 nm thick, is present on the silicon surface. Interestingly, there is no oxide layer around the Ag nanostructures. The quality of the
  • (f) 600 °C; (g) average nanostructure diameter as a function of the annealing temperature. (a) HRTEM image of a cross section of a nanoisland formed from a 3 nm thick film, annealed at 550 °C for 15 min; (b) EDS analysis and (c) detailed EDS analysis of the cross section of the nanoisland. Absorbance
PDF
Album
Full Research Paper
Published 25 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • cation needs a coordinating headgroup that is able to ionically interact with the perovskite structure. In addition, the molecular projection along the z-axis should fit into the square defined by four corner-sharing octahedral [14]. Thus, the cross section of the ligand is a limiting factor, whereas
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • giving rise to the so-called localized surface plasmon resonance (LSPR). The position and the bandwidth of the LSPR can be modulated by the shape of the nanocrystals and can vary between 400 and 2000 nm. The high absorption cross section (plasmonic nanoparticles absorb photons over a region about ten
PDF
Album
Review
Published 31 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • Timoshenko beam of Figure 3 are described as where u1, u2 and u3 are displacements along the axes x, y and z, respectively, ψ(x,t) is the angular rotation of the beam cross section and w(x,t) is the beam lateral deformation. By replacing the equations of non-zero elements, one can obtain the strain, stress
PDF
Album
Full Research Paper
Published 13 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • distances granting metallic conductance also in this ultimate scaling limit. (iii) The device conductance is largely determined by the rearrangement of only a few atoms in this narrowest cross section, which can take place at a very large bandwidth and unprecedentedly low energy cost [5][6][7][8][9
PDF
Album
Full Research Paper
Published 08 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • with the holding the potential at −0.88 V is shown in Figure 7d. The horizontal cross section on Figure 7b is shown in Figure 7e. It shows that the ≈1 nm height of the Sb deposits was formed at that time. At the bottom of Figure 7b, the height of the Sb deposits reaches to ≈6 nm, which is around 30
  • adlayer is shown with cross section in the image g. (c, d) The electrode potential was held at −0.74 V, followed by formation of a complete monolayer. (e) The electrode potential was scanned back from −0.74 to −0.31 V and then stopped at −0.31 V, followed by dissolution of the monolayer. (f) The electrode
  • direction. STM images of the Sb adlayer structure on Au(111) in 0.25 mM Sb2O3/0.5 M H2SO4 electrolyte at −0.74 V. (a) 50 × 50 nm; (b) 30 × 30 nm; (c) the cross section of image a; (d) the cross section of image b. Sample bias of 50 mV, set point = 0.5 nA and scan rate of 12 ln/s. Integral gain: 2 and
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • comparison of EDX analysis of experimental and model nanoparticles obtained from the liquid phase for a cooling rate of 1 and 1.5 K/ps with a silicon concentration of 10 or 50 atom %. The values are obtained by summing the number of atoms in the cross section perpendicular to the axis of the nanoparticle and
  • structure. The structure of a Cu–Si nanocluster with a silicon content of 50 atom % at different times at a cooling rate of 0.002 K/ps after a) 0.75 ns, b) 7.5 ns, c) 75 ns, and d) 750 ns; top row: cross section, bottom row: outside view. Transmission electron microscopy of the Cu–SiOx Janus-like, Cu@SiOx
PDF
Album
Full Research Paper
Published 13 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • soft chemical colloidal techniques often demonstrate a morphology with axes of five-fold (pentagonal) symmetry [1]. Depending on the synthesis conditions such structures can be synthesized in the form of 0D nanoparticles or high-aspect ratio 1D nanowires (NWs) with pentagonal cross-section [2][3]. The
  • pentagonal NWs can be considered as 1D materials consisting of five prismatic monocrystalline domains with a triangular cross-section rotated relative to each other by approximately 72°, as shown schematically in Figure 1. The crystalline domains are divided by twin boundaries [4][5]. Due to the fact that
  • conjugated gradient method in order to make the configuration reach a local stable state. The NW is further equilibrated at 300 K for about 40 ps to relax the internal stress. Figure 1c shows the distribution of von Mises stress on the cross-section after this equilibration. To apply a bending load to the NW
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • resistance, Rlat to the charge carrier mobility of anthracene and the charge carrier density N using the relation Here, l denotes the length of the current path, and A the cross-section. Using an average e-mobility in anthracene single crystals of 1 cm2/V s at 300 K [42], and a value of l/A of 1 nm−1, we
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • excitation power density, this can influence both the UCL intensity and the UCL spectral distribution. In general, the coating with a thick silica shell is not expected to strongly affect the brightness of the UCNPs as long as the two properties absorption cross section and fluorescence quantum yield, which
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • /TiO2/Sb2S3 stack. (c) EQE of the best-performing solar cell (100 nm Sb2S3) and absorption coefficients (α) of Sb2S3 and P3HT. (d) J–V curves at AM1.5G of 100 nm Sb2S3 solar cells of different size. SEM cross-section of the best-performing 5.5% PCE solar cell (100 nm Sb2S3) and the corresponding device
  • Laboratory of Optoelectronic Materials Physics at Tallinn University of Technology (TUT) for recording the cross-section SEM image of the solar cell and for EDX measurements, and Eng. Jekaterina Kozlova from the Institute of Physics at Tartu University for recording surface SEM images of glass/ITO/TiO2/Sb2S3
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • OPV layers cross-section. We observe thicknesses of each layer that acceptably correlate with the sheet thicknesses determined by the AFM measurement in contact mode, namely ITO ≈197 nm, PEDOT:PSS ≈40 nm and PTB7:PC71BM active layer ≈113 nm. Figure S3(a–d) in Supporting Information File 1 shows the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • nonlinearity of a single nanostructure, but also reports surprisingly large plasmonic nonlinearities. Keywords: absorption cross section; laser scanning microscopy; nanoplasmonics; nonlinear absorption; nonlinear scattering; single gold nanostructures; Introduction It is well known that the optical
  • with high-intensity laser light, the photothermal effect induces a change of the particle permittivity leading to the nonlinearity. However, this equation only explains a square-order difference between scattering and absorption. The above equation considers the total scattering cross section
PDF
Album
Full Research Paper
Published 06 Nov 2019

Liquid crystal tunable claddings for polymer integrated optical waveguides

  • José M. Otón,
  • Manuel Caño-García,
  • Fernando Gordo,
  • Eva Otón,
  • Morten A. Geday and
  • Xabier Quintana

Beilstein J. Nanotechnol. 2019, 10, 2163–2170, doi:10.3762/bjnano.10.209

Graphical Abstract
  • of LC-cladding MMIs The pattern seen in Figure 4 repeats itself giving a number of specific effective device lengths for which a cross section would lead to several well-defined output channels at different distances LN. A graph of the characteristic lengths for four different output configurations
PDF
Album
Full Research Paper
Published 05 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
PDF
Album
Review
Published 04 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • could induce a self-assembly [16][17] (see Figure 1). The process of the assembly of NWs induced by elastocapillary forces is complex. There are many factors that influence the assembly such as periodicity, height, cross section, and tensile strength of the NWs as well as evaporation rate and the
PDF
Album
Full Research Paper
Published 31 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • array of pillar-like structures with a cross-section of 20–30 nm and evident gaps between the pillars of about 150 nm for both samples (see Figure 2B,C). Cross-section SEM micrographs clearly visualize an array of vertically aligned MOF needles on the surface plane. In addition, a uniform film thickness
  • of about 800 nm is observed throughout the cross-section of both Ni- and Co-CAT-1 samples, indicating a self-terminating growth under the employed conditions (Figure 3B and Figure S5.4, Supporting Information File 1). To confirm that the defined nanostructured film is indeed crystalline and the
  • the solid/water interface on the identical pelletized sample. A) A scheme of the vapor-assisted conversion (VAC) set up and the resulting nanostructured films. B) SEM top view, 30° tilted cross-section and the related GIWAXS pattern of the Co-CAT-1 film. C) SEM top view, 30° tilted cross-section
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019
Other Beilstein-Institut Open Science Activities