Search results

Search for "dynamics" in Full Text gives 485 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • Moharam Habibnejad Korayem Ali Asghar Farid Rouzbeh Nouhi Hefzabad Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran Department of Mechanical Engineering
  • of nanoparticles. To model this process, previous studies employed classical continuum mechanics and molecular dynamics simulations which had certain limitations; the former does not consider size effects at the nanoscale while the latter is time consuming and faces computational restrictions. To
  • the modified couple stress theory are used to model the dynamics of cylindrical gold nanoparticles while the finite element method is utilized to solve the governing equations of motion. The results show a difference of 90% between the classical and nonclassical models in predicting the maximum
PDF
Album
Full Research Paper
Published 13 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • designed a porphyrin-tethered single-DNA duplex as a transmembrane ion channel [94]. Their minimalistic design approach involved the attachment of six porphyrin units along the oligonucleotide sequence that facilitated the movement of ions through the channel. The schematic of molecular dynamics simulation
PDF
Album
Review
Published 09 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • peptides to directly cross the cellular membranes involves the formation of pores. A theoretical model using molecular dynamics simulations was proposed for the translocation of the TAT peptide, which explains the relevance of peptide–phosphate interaction during the pore formation [47]. This theoretical
PDF
Album
Review
Published 09 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • purple line, allowed for real-time studies of the switching dynamics. The emergence of multiple timescales governing the resistive transition is clearly seen in Vbias. This is attributed to the interplay between the voltage-dividing effect of the series resistor and the exponential slow-down/speed-up of
  • voltage was applied. The simultaneously recorded Vbias (purple) trace shows the dynamics of the resistive switchings. (b) ROFF (red) and RON (blue) as a function of the voltage pulse amplitude. The inset demonstrates the long-term stability of the OFF and ON states evaluated during 300 repetitive duty
PDF
Album
Full Research Paper
Published 08 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • [52]. Fundamental to its operating principle, the Kalman filter utilizes a linear model of system dynamics and feedback of the state variables to update the Kalman gains, which controls the tracking bandwidth. When the time-varying system is discretized for t = kTs, where Ts is the sampling period
PDF
Album
Review
Published 07 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • . Nevertheless, the temperature used in the simulations is significantly below the melting temperature of Au. Furthermore, in the computational model, the dynamics of diffusion are unaffected by temperature, making comparisons to experimental results possible [21]. Visualizations of the results of the simulation
PDF
Album
Full Research Paper
Published 06 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • improves the adhesion of the perovskite ink to hydrophobic substrates, effectively inhibiting the solution flow dynamics in the drying perovskite ink layer leading to compact and uniform perovskite films. The very small amount of surfactant additive has no adverse effect on the optoelectronic properties of
PDF
Album
Review
Published 06 Jan 2020

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • 10.3762/bjnano.10.240 Abstract Molecular dynamics modelling of the formation of copper and silicon composite nanostructures was carried out by using the many-particle potential method. The dependences of the internal structure on the cooling rate and the ratio of elements were investigated. The
  • content of 50 atom %. Additionally, an estimation of the effective experimental cooling rate was made. Keywords: composite nanoparticle; gas-phase synthesis; molecular dynamics modelling; Introduction In recent years, due to the development of various methods of synthesis, it has become possible to
  • approach to modelling the formation of metal/semiconductor core–shell nanoparticles was described in [18]. There, a core–shell particle was obtained by spraying the outer shell on an already formed core. The molecular dynamics calculation of such a procedure showed the possibility of the formation of Cu–Si
PDF
Album
Full Research Paper
Published 13 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • flexible polymer composite materials. Keywords: finite element method; mechanical properties; molecular dynamics; nanowires; Introduction Nanostructures comprised of noble metals with face centered cubic (FCC) crystal structure (Au, Ag and Cu according to the most common physical definition) prepared via
  • : Classical molecular dynamics (MD) simulations were conducted to investigate the atomic deformation behavior of the penta-twinned Ag NW under bending. The large-scale open-source molecular dynamics simulator, LAMMPS, developed by Sandia National Laboratories, was adopted [35]. The interatomic interactions
  • the present work are comparable, but do not exceed the theoretical yield strength value of bulk Au, which is about 8 GPa in accordance with the empirical relation E/10 based on atomic bonding considerations [41]. Molecular dynamics results Figure 8 depicts the loading curve of the penta-twinned NW
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • conductivity within self-assembled monolayers was further corroborated by Bashir et al. through the application of molecular dynamics simulation where the charge transport was taken explicitly into account [29]. The theoretical study on the optimized model of HBC by using the Ehrenfest (mean field) approach
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • sensitivity (up to 17 times), selectivity and improves the response dynamics of the sensors. Keywords: gold-decorated MWCNTs; multiwall carbon nanotubes (MWCNTs); self-assembled monolayers (SAMs); sensitivity; selectivity; vapour sensor; Introduction Aromatic volatile organic compounds (VOCs) such as
  • selectivity. It was also shown to improve the sensor response dynamics. These results combined with previous results [22][32] could be interesting for the development of functionalised multisensor arrays combined with an artificial intelligence algorithm for selectivity enhancement. Synoptic structure of the
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • spectral emission (Table 1). Anisotropy is considered a powerful technique to investigate the molecular dynamics of fluorescent solutes, such as CUR. During the fluorescence analysis, the molecules are excited by linearly polarized light, and they absorb and emit the fluorescence in a polarized way. If the
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields

  • Nikolai A. Usov,
  • Ruslan A. Rytov and
  • Vasiliy A. Bautin

Beilstein J. Nanotechnol. 2019, 10, 2294–2303, doi:10.3762/bjnano.10.221

Graphical Abstract
  • .10.221 Abstract The dynamics of magnetic nanoparticles in a viscous liquid in a rotating magnetic field has been studied by means of numerical simulations and analytical calculations. In the magneto-dynamics approximation three different modes of motion of the unit magnetization vector and particle
  • ]. Inside the cells magnetic nanoparticles usually form dense clusters tightly bound to the surrounding tissues [21][22][23][24], so that the rotation of a nanoparticle as a whole in AMF is difficult or completely absent. Thus, the AMF energy absorption is only associated with the dynamics of the magnetic
  • assembly of superparamagnetic particles with uniaxial anisotropy distributed in a viscous liquid have been carried out. First, the behavior of a magnetic particle in a RMF is studied in the magneto-dynamics approximation [25][44][45] neglecting the thermal fluctuations of the particle magnetic moment and
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • enhancement of the dynamic range by a factor of 4 × 103 is achieved for interrogation times exceeding 2 ms. Optical detection of weak magnetic fields in a spin bath is undertaken in [26] by sensing external magnetic dipoles with fluorescent ND due to the charge dynamics of coupled spins. This provides
  • detect the spin status, which can be read optically by spin relaxation contrast. The sensitivity can thus be improved to less than a microtesla with a subwavelength spatial resolution and sub-millisecond time resolution. This enables the wide-field microscopy of a domain wall with skyrmion dynamics and
  • to individually resolve each NV center. Using NV spin properties creating three-level blinking dynamics, two NV centers in the same ND were localized at 23 nm. NDs can host several paramagnetic point defects and impurities along the diamond surface, which are dark and can broaden the NV spin spectra
PDF
Album
Review
Published 04 Nov 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • . 100 nm [36]. Spectroscopic analyses were recorded at ambient temperature (21–28 °C) using quartz cuvettes with an optical path length of 1 cm. Dynamic light scattering DLS measurements were carried out on a Wyatt DynaProTM DP-801 system coupled with Dynamics V7.0.0.95 software. Measurements were
PDF
Album
Full Research Paper
Published 07 Oct 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • inorganic film by, e.g., thermal annealing. Results: Simple laser reflection experiments showed that this growth process induced light scattering at the film/air interface. We report on this phenomenon, considering the growth dynamics of gold nanoparticles in a polymer film. The scattering of light was
  • studied by measuring the bi-directional reflection distribution function. In parallel with the observation of enhanced scattering, imaging ellipsometry in dynamics mode showed that local values of the ellipsometric angles Ψ and Δ were strongly modified by the annealing process. Conclusion: A diffraction
  • regimes in the dynamics of the nanoparticle growth and in the optical response of the nanocomposite. Keywords: gold; imaging ellipsometry; metal nanoparticles; plasmonic nanocomposite; polymer films; Introduction Over the last 20 years, numerous studies were carried out to investigate the optical
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • optimal cantilever stiffness can be achieved through analysing the cantilever dynamics, which is able to establish the quantitative dependence of the resonance frequency sensitivity on the contact stiffness. Cantilever oscillation eigenmode The employed cantilever oscillation mode is another important
  • the dispersion curve. The cantilever dynamics analysis and the tip–sample contact mechanics model can provide the dispersion relation between contact resonance frequency and contact stiffness, and the relationship between contact stiffness and local mechanical properties, respectively [16][44]. The
  • well with the experimental results. The semi-analytical contact mechanics analysis, combined with a proper cantilever dynamics model, is proved to be convenient for guiding the experimental parameter optimization. Furthermore, detection of defects in the embedded circuit pattern was carried out by
PDF
Album
Full Research Paper
Published 07 Aug 2019

Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube

  • Mandula Buren,
  • Yongjun Jian,
  • Yingchun Zhao,
  • Long Chang and
  • Quansheng Liu

Beilstein J. Nanotechnol. 2019, 10, 1628–1635, doi:10.3762/bjnano.10.158

Graphical Abstract
  • independent of the surface charge. However, recent theoretical and experimental results have shown that the surface charge affects the slip length. Joly et al. [18] used molecular dynamics simulations to find the relationship between slip length and surface charge density. The reason is that there exists an
PDF
Album
Full Research Paper
Published 06 Aug 2019

Graphynes: an alternative lightweight solution for shock protection

  • Kang Xia,
  • Haifei Zhan,
  • Aimin Ji,
  • Jianli Shao,
  • Yuantong Gu and
  • Zhiyong Li

Beilstein J. Nanotechnol. 2019, 10, 1588–1595, doi:10.3762/bjnano.10.154

Graphical Abstract
  • ][13][14]. Based on in silico molecular dynamics (MD) tensile tests, the recorded failure strength values for different types of GYs range between 32.48 and 63.17 GPa [2][15][16]. According to a first-principle study, the failure strain of GY reaches 20% [17]. A high Young’s modulus of 532.5 GPa is
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • molecular controls based on external stimuli switching [184][185][186][187][188] (basics for molecular machines, Nobel prize in 2016 [189][190][191]). The anisotropic dynamics at liquid interfaces described above are expected to play a crucial role in the production of low-dimensional materials and systems
PDF
Album
Review
Published 30 Jul 2019

Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”

  • Daria V. Popolitova,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2019, 10, 1548–1558, doi:10.3762/bjnano.10.152

Graphical Abstract
  • equal to 1. In this paper we suggest a method for the ultrafast control of the population dynamics and population transfer between the qubit states in superconducting meta-atoms by unipolar pulses using the regime of stimulated Raman Λ-type transitions between them via upper-lying levels. The
  • interaction of a multilevel superconducting meta-atom with unipolar magnetic field pulse. The considered model seems to be fairly general since it takes into account the multilevel structure of a real superconducting system and can be applied to describe the dynamics of qubit states in different types of
  • . Below, we show that in this way we can control the speed of transition between individual states, which is extremely important for the presented concept. The dynamics of such a superconducting system in a magnetic pulse field is described by the non-stationary Schroedinger equation: where stands for
PDF
Album
Full Research Paper
Published 29 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • /CBO composite. (a) TEM and (b) HRTEM images of the 2.5 wt % Au/CBO composite. XPS high-resolution spectra of the 2.5 wt % Au/CBO composite: (a) Au 4f; (b) Cu 2p; (c) Bi 4f and (d) O 1s. (a) TC degradation dynamics under visible-light irradiation. (b) Changes of the characteristic absorption of TC when
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • dynamics without any normalization, it can be seen from Figure 10 that the assumption of the viscous element resulted in erroneous determination of the elastic modulus on a graphite terrace. Influence of applied normal force As discussed earlier, the measured amplitude response using FMM can be influenced
  • excluded as a contributing factor to elastic modulus maps produced using dynamic AFM. CR-AFM showed a larger variation in amplitude over the step edges compared with FMM AFM. The quantification of the elastic modulus on the HOPG terrace was performed using FMM AFM and through analysis of the dynamics of
PDF
Album
Full Research Paper
Published 03 Jul 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • atoms slightly enlarges (0.5%) the bonds between neighboring atoms belonging to the Y(OH)3 crystal. Regarding the stability or robustness of Eu dopants in the host material, molecular dynamics calculations show that Eu atoms, covalently attached to the host lattice with a binding energy of 2.34 eV
PDF
Album
Full Research Paper
Published 07 Jun 2019
Other Beilstein-Institut Open Science Activities