Search results

Search for "dynamics" in Full Text gives 499 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • of Electrical and Computer Engineering, University of Texas, El Paso, TX 79968, United States 10.3762/bjnano.11.63 Abstract Phonon dynamics is explored in mechanically exfoliated two-dimensional WSe2 using temperature-dependent and laser-power-dependent Raman and photoluminescence (PL) spectroscopy
  • oscillator model to explain the damping mechanism in WSe2. From this it was determined that the damping coefficient increases with the number of layers. The work reported here sheds fundamental insights into the evolution of phonon dynamics in WSe2 and should help pave the way for designing high-performance
  • , grown from bottom-up processes akin to graphene. While graphene is comprised of a single element on the periodic table, i.e., carbon, TMDCs are binary compounds which makes their lattice dynamics more complex compared to multilayer (ML) graphene [6]. The symmetry, force constants, and frequency
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • energy in each group (±20 meV) was attributed to variations of the strain in the h-BN matrix, as well as photo-conversion to a dark state that may be responsible for the blinking. Only 5% of the emitters were photostable. The photo-dynamics indicates the presence of a metastable state (3-level system
  • at 675 nm, and emitters with ZPLs of 760 nm were found with a much shorter lifetime and a saturation count rate in the 200 kcts/s. The photo-dynamics of these emitters indicate the presence of a multilevel system with three metastable states with long decay rates of 480 ns, 5 µs and 31 ms. Blinking
  • were studied. Here the correlations between material structural features and the location of SPEs from bulk down to the monolayer was studied at room temperature. Chemical etching and ion irradiation are used to generate the SPEs in h-BN various materials. Their photo-dynamics analysis reveals
PDF
Album
Review
Published 08 May 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • mechanics models [22][23][24][25] to allow better visualization of surface interactions. While useful insights can be obtained using fully atomistic simulations, such as molecular dynamics simulations or density functional theory, these techniques are impractical for describing larger contacts with a large
PDF
Album
Full Research Paper
Published 06 May 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • spring constant of 0.2 N/m were used. All experiments were carried out in dry air at a temperature of 21.0 ± 0.1 °C and a relative humidity of (2 ± 1)%. It is very important to define the appropriate signal to perturb the system. This allows for gathering sufficient information about the system dynamics
  • . For this work, a stochastic signal is used for the tip–sample excitation because it can extract all the system dynamics, i.e., persistent excitation in the system theory field [23][24]. A FFT of the deflection signal from the photodiodes is computed by the NI PXIe-1073 device. One FFT is carried out
  • frequency resolution. Theoretically, a white-noise signal features an infinitely flat bandwidth, which is impossible to generate [35][49]. Fortunately, it can be generated in approximation using a waveform function generator. This makes the white-noise signal an ideal tool to extract all system dynamics
PDF
Album
Full Research Paper
Published 04 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • the influence of fullerene (C60) on the CTE of Araldite LY 5052/Aradur HY 5052 cross-linked epoxy resin by molecular dynamics simulations. The CTE was minimized by adding a maximum of 15.9 wt % fullerene to the LY/HY/C60 epoxy system. Liu et al. [14] selected MCM-41 mesoporous silica nanoparticles
PDF
Album
Full Research Paper
Published 20 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • , Institute of Building Energetics, Thermal Engineering and Energy Storage (IGTE), Pfaffenwaldring 31, 70569 Stuttgart, Germany 10.3762/bjnano.11.46 Abstract Electrochemical strain microscopy (ESM) is a powerful atomic force microscopy (AFM) mode for the investigation of ion dynamics and activities in energy
  • storage materials. Here we compare the changes in commercial LiFePO4 cathodes due to ageing and its influence on the measured ESM signal. Additionally, the ESM signal dynamics are analysed to generate characteristic time constants of the diffusion process, induced by a dc-voltage pulse, which changes the
  • iron dissolution the lower ESM signal is a direct consequence. It is noted that this is probable, as Fe-dissolution has been reported as the prominent degradation mechanism of LFP [9][72][73]. The dynamics of the relaxation process after the dc-voltage pulse are further analysed in Figure 7 and Figure
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • . Therefore, decreased radiative recombination can be observed and increased photoswitching occurs. Time-dependent fluorescence measurements reveal the distance-dependent energy transfer dynamics. We observe much shorter lifetimes for small insulating spacers (AzoC1 and AzoC2) than for longer spacers (AzoOC4
  • and AzoOC12), which can be seen in Figure 6B. As many other charge-carrier dynamics beside the radiative recombination, such as photorecycling and surface defects, affect the PL no (bi)exponential fit could be found [53][54]. Thus, the recorded measurements are discussed qualitatively. A small spacing
  • perovskite surface (AzoC1, AzoC2) leads to a rapid injection of excited electrons into the chromophore. A larger spacing (AzoOC12) suppresses the transfer and extended lifetimes are observed. Conclusion We have investigated the interfacial dynamics between 2D and 3D hybrid perovskite phases and novel
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • stem from the dynamics and mechanics of an intermittent-contact operation. Besides the fact that electrical contacts would be intermittent, the nature of the contact would also be time-dependent within the contact time. This is because the indentation is constantly varying. Furthermore, the
PDF
Album
Full Research Paper
Published 13 Mar 2020

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • nuclear Overhauser effects (NOE) between spatially close protons gives useful information about the dynamics and averaged relative inter/intramolecular proton distances of these particles within 0.4 nm in solution [37][38][39]. Н8/Н1, Н8/Н2, Н6/Н2, Н8/Н3 cross peaks are observed in the 2D 1H,1H-ROESY NMR
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • ), including superconducting systems based on the Josephson effect. It has been shown that physics behind a Josephson junction (JJ) is dual to a quantum phase-slip junction (QPSJ) [3], whereby the corresponding QPSJ-based qbit operation has also been demonstrated [4]. At the same time, the quantum dynamics of
  • necessary, a small magnetic field, up to 0.05 T, was applied using small superconducting coils wound directly on the sample holder cap. Results and Discussion The ultimate goal of this work is to study the quantum dynamics of the QPSJ, a system dual to JJ [3], including the observation of Coulomb blockade
PDF
Album
Full Research Paper
Published 03 Mar 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • [160][161], or by inducing bending of the plasma membrane [162][163], as already observed with certain viruses [164]. These changes in membrane dynamics might as well be a trigger for the endocytosis of nanoparticles via alternative mechanisms, which are not yet fully characterized. Extracting
PDF
Album
Review
Published 14 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • ); organic photovoltaics; photocarrier dynamics; pump–probe configuration; time-resolved measurements; Introduction Many emerging photovoltaic technologies rely on the use of thin film materials displaying structural and/or chemical heterogeneities at the μm or nm scale. This is the case for solution
  • the photocharging time is not negligible compared to the light pulse duration. In this case, numerical simulations are necessary to properly analyze the spectroscopic SP(fmod) curves [18]. When investigating organic donor–acceptor (D–A) blends, both capacitive effects and photocharging dynamics shall
  • global electrostatic landscape probed by KPFM in the dark state [20]. The photocharging dynamics can be understood as follows. After exciton splitting and dissociation of the charge transfer states at the D–A interfaces, the photogenerated carriers experience a drift-diffusion limited by the carrier
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • experimental tools for mimicking complex physiological environments at the preclinical stage. Here, we report a coupled experimental and computational fluid dynamics (CFD)-based novel in vitro approach to predict the flow velocity and binding of NP drug delivery systems during transport through vasculature
  • . Poly(hydroxyethyl)methacrylate hydrogels were used to form soft cylindrical constructs mimicking vascular sections as flow channels for synthesized iron oxide NPs in these first-of-its-kind transport experiments. Brownian dynamics and material of the flow channels played key roles in NP flow, based on
  • but a flow controlled by the surrounding fluid and Brownian dynamics at the lowest NP concentrations. The CFD model predicted a mass loss of 1.341% and 6.253% for the 4.12 g·mL−1 and 2.008 g·mL−1 inlet mass concentrations of the NPs, in close confirmation with the experimental results. This further
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • sensitivity are currently implemented to obtain reliable information on tumor-associated genetic modifications and to follow tumor dynamics [4][16][46][56]. These techniques are mainly modifications of the well-known polymerase chain reaction (PCR), establishing thus the state-of-the-art in clinics in the
  • cost (200 US dollars). However, the time required to complete such an analysis exceeds several weeks, making it unfeasible for the fast monitoring of tumor dynamics. Therefore, point-of-care diagnostic tools that offer rapid (hours) discrimination of an individual mutation remain an aim to be pursued
PDF
Album
Review
Published 31 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • Moharam Habibnejad Korayem Ali Asghar Farid Rouzbeh Nouhi Hefzabad Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran Department of Mechanical Engineering
  • of nanoparticles. To model this process, previous studies employed classical continuum mechanics and molecular dynamics simulations which had certain limitations; the former does not consider size effects at the nanoscale while the latter is time consuming and faces computational restrictions. To
  • the modified couple stress theory are used to model the dynamics of cylindrical gold nanoparticles while the finite element method is utilized to solve the governing equations of motion. The results show a difference of 90% between the classical and nonclassical models in predicting the maximum
PDF
Album
Full Research Paper
Published 13 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • designed a porphyrin-tethered single-DNA duplex as a transmembrane ion channel [94]. Their minimalistic design approach involved the attachment of six porphyrin units along the oligonucleotide sequence that facilitated the movement of ions through the channel. The schematic of molecular dynamics simulation
PDF
Album
Review
Published 09 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • peptides to directly cross the cellular membranes involves the formation of pores. A theoretical model using molecular dynamics simulations was proposed for the translocation of the TAT peptide, which explains the relevance of peptide–phosphate interaction during the pore formation [47]. This theoretical
PDF
Album
Review
Published 09 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • purple line, allowed for real-time studies of the switching dynamics. The emergence of multiple timescales governing the resistive transition is clearly seen in Vbias. This is attributed to the interplay between the voltage-dividing effect of the series resistor and the exponential slow-down/speed-up of
  • voltage was applied. The simultaneously recorded Vbias (purple) trace shows the dynamics of the resistive switchings. (b) ROFF (red) and RON (blue) as a function of the voltage pulse amplitude. The inset demonstrates the long-term stability of the OFF and ON states evaluated during 300 repetitive duty
PDF
Album
Full Research Paper
Published 08 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • [52]. Fundamental to its operating principle, the Kalman filter utilizes a linear model of system dynamics and feedback of the state variables to update the Kalman gains, which controls the tracking bandwidth. When the time-varying system is discretized for t = kTs, where Ts is the sampling period
PDF
Album
Review
Published 07 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • . Nevertheless, the temperature used in the simulations is significantly below the melting temperature of Au. Furthermore, in the computational model, the dynamics of diffusion are unaffected by temperature, making comparisons to experimental results possible [21]. Visualizations of the results of the simulation
PDF
Album
Full Research Paper
Published 06 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • improves the adhesion of the perovskite ink to hydrophobic substrates, effectively inhibiting the solution flow dynamics in the drying perovskite ink layer leading to compact and uniform perovskite films. The very small amount of surfactant additive has no adverse effect on the optoelectronic properties of
PDF
Album
Review
Published 06 Jan 2020

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • 10.3762/bjnano.10.240 Abstract Molecular dynamics modelling of the formation of copper and silicon composite nanostructures was carried out by using the many-particle potential method. The dependences of the internal structure on the cooling rate and the ratio of elements were investigated. The
  • content of 50 atom %. Additionally, an estimation of the effective experimental cooling rate was made. Keywords: composite nanoparticle; gas-phase synthesis; molecular dynamics modelling; Introduction In recent years, due to the development of various methods of synthesis, it has become possible to
  • approach to modelling the formation of metal/semiconductor core–shell nanoparticles was described in [18]. There, a core–shell particle was obtained by spraying the outer shell on an already formed core. The molecular dynamics calculation of such a procedure showed the possibility of the formation of Cu–Si
PDF
Album
Full Research Paper
Published 13 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • flexible polymer composite materials. Keywords: finite element method; mechanical properties; molecular dynamics; nanowires; Introduction Nanostructures comprised of noble metals with face centered cubic (FCC) crystal structure (Au, Ag and Cu according to the most common physical definition) prepared via
  • : Classical molecular dynamics (MD) simulations were conducted to investigate the atomic deformation behavior of the penta-twinned Ag NW under bending. The large-scale open-source molecular dynamics simulator, LAMMPS, developed by Sandia National Laboratories, was adopted [35]. The interatomic interactions
  • the present work are comparable, but do not exceed the theoretical yield strength value of bulk Au, which is about 8 GPa in accordance with the empirical relation E/10 based on atomic bonding considerations [41]. Molecular dynamics results Figure 8 depicts the loading curve of the penta-twinned NW
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • conductivity within self-assembled monolayers was further corroborated by Bashir et al. through the application of molecular dynamics simulation where the charge transport was taken explicitly into account [29]. The theoretical study on the optimized model of HBC by using the Ehrenfest (mean field) approach
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019
Other Beilstein-Institut Open Science Activities