Search results

Search for "positioning" in Full Text gives 157 result(s) in Beilstein Journal of Nanotechnology.

Mechanical properties of sol–gel derived SiO2 nanotubes

  • Boris Polyakov,
  • Mikk Antsov,
  • Sergei Vlassov,
  • Leonid M Dorogin,
  • Mikk Vahtrus,
  • Roberts Zabels,
  • Sven Lange and
  • Rünno Lõhmus

Beilstein J. Nanotechnol. 2014, 5, 1808–1814, doi:10.3762/bjnano.5.191

Graphical Abstract
  • tests. Prior to the three-point bending test an AFM image of a NT suspended over a trench was taken in tapping mode at low magnification (typically 10 × 10 μm, Figure 3a). In order to ensure proper tip positioning during force spectroscopy a NT was scanned sequentially at a higher magnification
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2014

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • fabrication process yields fully functional devices. Conversely, bottom-up approaches allow for an easier production of nanowires, but then the fabrication of devices requires the development of complex procedures for the positioning of nanowires with respect to contacts and connections. A typical top-down
PDF
Album
Review
Published 14 Aug 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • effect comes from either the energetically preferable positioning of nitrogen on the graphene edge during the growth process [41][42], where the symmetry breaking effect is the edge structure, or from inter-impurity interactions in the impurity ensemble [39][43] where the symmetry is broken by the
PDF
Album
Review
Published 05 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • motorized translation stage (Physik Instrumente GmbH, Germany) was used for sample positioning and translation. A computer controlled LCD element was used for setting the laser pulse energy. It features periodic groove-like microstructures (PGM) with different structural wavelengths of 5 µm, 25 µm, 50 µm
PDF
Album
Full Research Paper
Published 21 Jul 2014

Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures

  • Andreas Landefeld and
  • Joachim Rösler

Beilstein J. Nanotechnol. 2014, 5, 1066–1070, doi:10.3762/bjnano.5.118

Graphical Abstract
  • ). A system of two micromanipulators (MM3A-EM from Kleindiek Nanotechnik) was mounted on the stage and at the door of the microscope in a angle of 90° to each other. Regarding nanoforging, the positioning accuracy is 3.5 nm and 5 nm, respectively, in the two rotational axes and 0.25 nm in the linear
PDF
Album
Supp Info
Letter
Published 16 Jul 2014

Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

  • Jun Zhao,
  • Bettina Frank,
  • Frank Neubrech,
  • Chunjie Zhang,
  • Paul V. Braun and
  • Harald Giessen

Beilstein J. Nanotechnol. 2014, 5, 577–586, doi:10.3762/bjnano.5.68

Graphical Abstract
  • allow for complex patterns), and capable of exact positioning of multiple materials in the sub-10 nm range over large areas. Also, stacking different materials or creation of 3D chiral structures is easy. First, we are going to describe the manufacturing process in detail, which consists of the hole
PDF
Album
Video
Full Research Paper
Published 06 May 2014

Control theory for scanning probe microscopy revisited

  • Julian Stirling

Beilstein J. Nanotechnol. 2014, 5, 337–345, doi:10.3762/bjnano.5.38

Graphical Abstract
  • consider the workings of the PI controller under perfect conditions. First, assume that the tip is stationary above a sample at a position Z, and that the z-piezoelectric actuator for tip positioning is extended by X (Figure 1). For this perfect model X is considered to be directly the output of the PI
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2014

Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts

  • Michaela Nebel,
  • Thomas Erichsen and
  • Wolfgang Schuhmann

Beilstein J. Nanotechnol. 2014, 5, 141–151, doi:10.3762/bjnano.5.14

Graphical Abstract
  • interpretation of the current response can only be realized by discrimination between the impact of topography and local reactivity by means of a constant-distance mode (cd-mode) positioning of the SECM tip in known and constant distance to the sample surface. The basis of cd-mode scanning is the control of the
  • outer ring with high catalyst loading due to a coffee drop effect [31][32], the topography of the catalyst spot was successfully visualized using shearforce-based positioning. The topographic features of the catalyst spot are also seen in the micrograph in the insert of Figure 1b. The oxygen consumption
  • therefore unambiguously allocated to the local catalyst activity for ORR. This experiment demonstrates the feasibility of the 4D SF/CD mode for studying the local activity of catalyst spots removing any impact from the sample topography. The accuracy of the shearforce-based tip positioning enables to follow
PDF
Album
Full Research Paper
Published 07 Feb 2014

Simulation of electron transport during electron-beam-induced deposition of nanostructures

  • Francesc Salvat-Pujol,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2013, 4, 781–792, doi:10.3762/bjnano.4.89

Graphical Abstract
  • geometries constructed by positioning a set of well-defined homogeneous bodies in space. Random trajectories are generated as follows [7]: particles are characterized by their position vector r = (x,y,z), energy E and a direction-of-flight unit vector d = (u,v,w), where u, v, and w are the direction cosines
PDF
Album
Full Research Paper
Published 22 Nov 2013

Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

  • Mir Masoud Seyyed Fakhrabadi,
  • Abbas Rastgoo and
  • Mohammad Taghi Ahmadian

Beilstein J. Nanotechnol. 2013, 4, 771–780, doi:10.3762/bjnano.4.88

Graphical Abstract
  • corresponding voltage is the dynamic pull-in voltage. Since, the fluid flow influences both stiffness and damping properties of the CNT, it can be applied as a proper tool for controlling and positioning purposes. By using different parameters of the fluid flow, one can control the behaviors of the CNT for a
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2013

Controlling the near-field excitation of nano-antennas with phase-change materials

  • Tsung Sheng Kao,
  • Yi Guo Chen and
  • Ming Hui Hong

Beilstein J. Nanotechnol. 2013, 4, 632–637, doi:10.3762/bjnano.4.70

Graphical Abstract
  • plasmonic resonators placed on a thin film of phase-change material can be selectively excited, generating isolated near-field energy hot-spots with selective excitation under a monochromatic plane wave illumination. Unlike other proposed techniques, our method for energy hot-spot positioning is based on a
  • positioning of the isolated energy hot-spot can be achieved, the challenge of lower field intensity with an increase of GST crystalline proportions still needs to be addressed. These weak energy localizations may result from more metal-like portion generated when the phase-change material is changed to the
  • near-field energy controllable template for positioning nanoscale energy hot-spots on the nanostructure landscape. As illustrated in [15], strong plasmon coupling between the constituent dipole antennas plays an important role in a closely packed nano-antenna array. The mutual interactions among the
PDF
Album
Full Research Paper
Published 09 Oct 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • photovoltage determination A UV-lamp (360 nm, L18W/73, Osram) was used for super-bandgap illumination. Trap and interface states were investigated under sub-bandgap illumination (λ > 385 nm) with LEDs (405 nm, 470 nm, 530 nm, 590 nm, Mightex Systems) or solid state lasers each mounted on a x-y-z positioning
PDF
Album
Full Research Paper
Published 01 Jul 2013

Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens

  • Michael Hirtz,
  • Marcus Lyon,
  • Wenqian Feng,
  • Andrea E. Holmes,
  • Harald Fuchs and
  • Pavel A. Levkin

Beilstein J. Nanotechnol. 2013, 4, 377–384, doi:10.3762/bjnano.4.44

Graphical Abstract
  • velocity lines, there is a widening visible at the start and end of the lines. This is caused by the acceleration and deceleration, respectively, of the piezo positioning table of the instrument before reaching the target speed or when slowing down before the end of a line. For microarray printing, the
PDF
Album
Supp Info
Video
Full Research Paper
Published 19 Jun 2013

Guided immobilisation of single gold nanoparticles by chemical electron beam lithography

  • Patrick A. Schaal and
  • Ulrich Simon

Beilstein J. Nanotechnol. 2013, 4, 336–344, doi:10.3762/bjnano.4.39

Graphical Abstract
  • . Afterwards, these arrays are characterised by using atomic force microscopy. Keywords: 2D pattern; indium tin oxide (ITO); positioning; SAM; self-assembly; Introduction Periodic arrays of nanometre-sized metal structures hold great promise for future applications, e.g., in nanoelectronics [1][2][3][4] or
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2013

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

  • Patrik Rath,
  • Svetlana Khasminskaya,
  • Christoph Nebel,
  • Christoph Wild and
  • Wolfram H.P. Pernice

Beilstein J. Nanotechnol. 2013, 4, 300–305, doi:10.3762/bjnano.4.33

Graphical Abstract
  • traditional butt-coupling using optical fibres aligned to cleaved facets of photonic chips is commonly employed [25], such an approach requires careful positioning of the input–output fibres with respect to the waveguide, which is time consuming and not suitable for the investigation of large numbers of
PDF
Album
Full Research Paper
Published 07 May 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • key achievement was the engineering of vertically oriented CNT-arrays by using CVD of ethylene, size-controlled Fe catalytic particles, and nanotube positioning by substrate patterning. The mechanism of the alignment of the CNTs was proposed to be due to the van der Waals forces where the outer wall
PDF
Album
Review
Published 22 Feb 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • nanostructure is shown in Figure 5b. The high-density stripes of the Pt nanoclusters are parallel to each other, and have an inclined angle of approximately 35° with respect to the long axis of CNT. This inclination can be tuned to any desired angle by positioning the CNTs relative to the scanning direction of
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Nanostructure-directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction

  • James L. Gole and
  • William Laminack

Beilstein J. Nanotechnol. 2013, 4, 20–31, doi:10.3762/bjnano.4.3

Graphical Abstract
  • can be correlated to allow the construction of a “Materials Positioning Diagram” for the acids and bases within the IHSAB and HSAB concepts as summarized in Figure 2 [7]. Recently, we have obtained additional data for PH3 on p+- and n-type decorated porous silicon (PS) [23]. For p-type PS, a TiO2
  • decorated surface is five times more responsive than the untreated PS interface [24]. For p+-type PS, TiO2, SnO2, CuxO, and AuxO decorated surfaces are respectively ≥ 4, 2.5, 3–3.5, and 7 times more responsive. The analyte response data forms the basis for the development of the materials positioning
  • situ modification shifts the positioning of the oxides toward the soft acid side of Figure 2 as it promotes the formation of a more basic interface. This enhancement of basic character promotes a significant change in sensor response. Results and Discussion Nitridation concept and enhanced basicity
PDF
Album
Review
Published 14 Jan 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • plasmonic structures, typically about 10 nm positioning accuracy must be achieved. Herein, the controlled positioning of single color centers in diamond is realized with nanometer spatial precision by ion-beam implantation through nanometer-sized apertures and by fabricating plasmonic structures with hot
  • relative to the gold markers is measured with nanometer precision by AFM. Finally, plasmonic structures are fabricated around the selected diamond nanocrystals. The middle panel of Figure 4b shows AFM images of the plasmonic resonators coupled to diamond nanocrystals. A positioning accuracy of about 20 nm
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012
Graphical Abstract
PDF
Album
Review
Published 17 Dec 2012

Physics, chemistry and biology of functional nanostructures

  • Paul Ziemann and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 843–845, doi:10.3762/bjnano.3.94

Graphical Abstract
  • -sized objects and functional systems. Examples are synthesis and controlled positioning of various nanoparticles and macromolecules providing, finally, specific functions if arranged on suitable platforms in an optimized way. In the context of arranging nanoobjects, the exploitation of self-organization
PDF
Editorial
Published 11 Dec 2012

Controlled positioning of nanoparticles on a micrometer scale

  • Fabian Enderle,
  • Oliver Dubbers,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 773–777, doi:10.3762/bjnano.3.86

Graphical Abstract
  • distances >1 µm on top of Si substrates. By using these NPs as masks for a subsequent reactive ion etching, the square pattern is transferred into Si as a corresponding array of nanopillars. Keywords: electron beam lithography; nanoparticles; positioning; self-assembling; unconventional lithography
  • importance [17][18]. Assuming that a fabrication recipe has been developed for NPs of a desired material, there is, however, for many applications still another demanding requirement: positioning the NPs at predesigned locations, either with respect to geometry, such as forming squares or triangles, or, at
  • distances of some tens of nanometers creative ideas have been realized based on even three-dimensional DNA spacers linked to Au NPs [23]. Somewhat more flexible with respect to the type of NPs is their positioning, exploiting wettability contrast of a substrate previously prepared by, e.g., microcontact
PDF
Album
Full Research Paper
Published 20 Nov 2012

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • positioning methods. Atom tracking [37] comprises the determination of the drift vector by measuring the shift in the position of an individual maximum in subsequent SPM images followed by an appropriate correction of the tip location that compensates for this drift. In contrast, the feed-forward procedure
  • during force-spectroscopy experiments, the use of digital electronics for NC-AFM detection and control generally eliminates the effects of electronic drifts on measured data. Piezo nonlinearities and piezo creep Positioning devices that employ piezoelectric materials to realize voltage-controlled
  • relative positioning of the tip and sample are widely used in SPM experiments (see, e.g., Figure 2) [38][39][40]. Despite subpicometer positioning accuracy, piezoelectric scanners display fundamental shortcomings. The most important limitation originates from the fact that the relationship between applied
PDF
Album
Full Research Paper
Published 11 Sep 2012

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

  • Kaliappan Muthukumar,
  • Harald O. Jeschke,
  • Roser Valentí,
  • Evgeniya Begun,
  • Johannes Schwenk,
  • Fabrizio Porrati and
  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 546–555, doi:10.3762/bjnano.3.63

Graphical Abstract
  • dissociation products remains as a deposit whose shape and position can be accurately controlled by the lateral positioning of the electron beam in an electron microscope [1][2][3][4][5]. Mostly gaseous, e.g., W(CO)6, Fe(CO)5, and CH3C5H5Pt(CH3)3 [6][7][8][9], but also liquid organometallic precursors
PDF
Album
Full Research Paper
Published 25 Jul 2012

Combining nanoscale manipulation with macroscale relocation of single quantum dots

  • Francesca Paola Quacquarelli,
  • Richard A. J. Woolley,
  • Martin Humphry,
  • Jasbiner Chauhan,
  • Philip J. Moriarty and
  • Ashley Cadby

Beilstein J. Nanotechnol. 2012, 3, 324–328, doi:10.3762/bjnano.3.36

Graphical Abstract
  • ], biomolecules [8][9], and quantum dots [10]. Nonetheless, these techniques fundamentally rely on a statistical distribution of molecules and are therefore not optimal for the study of specific isolated nanostructures at well-defined locations on a surface. Recent attempts at the positioning of quantum dots (QDs
  • ) based on electro-osmotic flow control (EOFC) [11][12] have resulted in a positioning precision of 130 nm when particle diffusion is suppressed. In a challenging recent experiment, atomic force microscopy (AFM) was used to manipulate a single gold nanoparticle (≈35 nm) to approach a single quantum dot
PDF
Album
Letter
Published 10 Apr 2012
Other Beilstein-Institut Open Science Activities