Search results

Search for "electron diffraction" in Full Text gives 189 result(s) in Beilstein Journal of Nanotechnology.

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • Supporting Information File 1). As shown in Figure 2a, the USM nanoparticles are nearly spherical, with an average particle diameter of 14.0 nm and a standard deviation of 2.0 nm, and monocrystalline (Figure 2b). The electron diffraction pattern corresponds to the spinel iron oxide nanocrystalline phase
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • wires and the corresponding selected area electron diffraction (SAED) pattern (Figure 3b). The SAED patterns demonstrate a distinct single-crystalline feature. The data show that the growth direction of the wire is perpendicular to the [111] direction, along the [112] direction. Figure 3c is a scanning
  • the cation supply. Indeed such comb-like structures were observed in our experiments, too. As illustrated in Figure 5, side branching takes place only on one side of the wire and forms a 60 degree angle with respect to the main stem. Electron diffraction indicates that the side branches maintain the
PDF
Album
Full Research Paper
Published 15 Aug 2014

Surface processes during purification of InP quantum dots

  • Natalia Mordvinova,
  • Pavel Emelin,
  • Alexander Vinokurov,
  • Sergey Dorofeev,
  • Artem Abakumov and
  • Tatiana Kuznetsova

Beilstein J. Nanotechnol. 2014, 5, 1220–1225, doi:10.3762/bjnano.5.135

Graphical Abstract
  • ampoules to monitor changes in the intensity of luminescence. Results and Discussion XRD shows that the QDs are pure InP nanocrystals (Figure 1). Figure 2a shows an overview HAADF-STEM image of the QDs that have a size ranging between 2 and 7 nm. The ring electron diffraction pattern (insert in Figure 2a
  • the synthesized InP QDs. (a) Overview HAADF-STEM image of InP QDs. The ring electron diffraction pattern (insert) is indexed on a face-centered cubic lattice with a ≈ 5.9 Å. (b) High resolution HAADF-STEM image of the [011]-oriented QD. Planar defects (stacking faults) associated with {111} close
PDF
Album
Full Research Paper
Published 06 Aug 2014

Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

  • Claudio Davet Gutiérrez-Lazos,
  • Mauricio Ortega-López,
  • Manuel A. Pérez-Guzmán,
  • A. Mauricio Espinoza-Rivas,
  • Francisco Solís-Pomar,
  • Rebeca Ortega-Amaya,
  • L. Gerardo Silva-Vidaurri,
  • Virginia C. Castro-Peña and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2014, 5, 881–886, doi:10.3762/bjnano.5.100

Graphical Abstract
  • ). Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine
  • of monodispersity could not be evaluated from the TEM micrograph. The TEM image of Figure 1a shows CdTe-NC with a size of 3.5 nm, the electron diffraction pattern (inset Figure 1a), indicated the face-centered cubic phase for CdTe as reported by Talapin et al. [31]. The electron diffraction pattern
  • attributed to the octahedral phase of Cd3P2 [35], so testifying the electron diffraction results. It is also observed that Cd3P2 disappeared at the low TOP concentration (Figure 3). The crystal size, as determinated by using the Debye–Scherrer formula, was 3.7 nm, which is in good agreement with the value
PDF
Album
Full Research Paper
Published 20 Jun 2014

Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

  • Carolina Gil-Lozano,
  • Elisabeth Losa-Adams,
  • Alfonso F.-Dávila and
  • Luis Gago-Duport

Beilstein J. Nanotechnol. 2014, 5, 855–864, doi:10.3762/bjnano.5.97

Graphical Abstract
  • transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). The TEM studies were done on a JEOL JEM-3011 microscope with accelerating voltage of 200 kV. The XRD analysis of the nanoparticles and the microparticles was done on a Philips diffractometer with a
PDF
Album
Full Research Paper
Published 16 Jun 2014

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

  • Xiaohong Wang,
  • Heinz C. Schröder and
  • Werner E. G. Müller

Beilstein J. Nanotechnol. 2014, 5, 610–621, doi:10.3762/bjnano.5.72

Graphical Abstract
  • (OH−). Analyses by X-ray and electron diffraction and Fourier transform infrared spectroscopy, as well as determination of the chemical composition revealed that at least under in vitro conditions in osteoblasts low concentrations of carbonate ions exist in their Ca2+/phosphate mineral phase. Parallel
PDF
Album
Review
Published 12 May 2014

Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

  • Federico Baiutti,
  • Georg Christiani and
  • Gennady Logvenov

Beilstein J. Nanotechnol. 2014, 5, 596–602, doi:10.3762/bjnano.5.70

Graphical Abstract
  • number and species of atoms forming each atomic layer is placed on the growing surface at the right time, so that each of them is deposited singularly and in a sequence defined by the operator. Key tool for the ALL-MBE technique is the reflection high-energy electron diffraction (RHEED) system, which
PDF
Album
Review
Published 08 May 2014

One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach

  • Vincent Tiing Tiong,
  • John Bell and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2014, 5, 438–446, doi:10.3762/bjnano.5.51

Graphical Abstract
  • a JEOL JEM-1400 microscope. High-resolution TEM (HRTEM) and selected area electron diffraction (SAED) images were obtained using JEOL JEM-2100 microscope at an accelerating voltage of 200 kV. Ultraviolet–visible (UV–vis) absorption spectrum of the sample was measured at room temperature using a
  • illustrates the crystal interplanar spacing of 3.12 Å, which can be ascribed to the (112) plane of kesterite phase CZTS. The diffraction spots in the selected area electron diffraction (SAED) pattern illustrated in Figure 1e can all be indexed to the (112), (220), (224) and (420) planes of kesterite CZTS
PDF
Album
Full Research Paper
Published 09 Apr 2014

One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer

  • Arkadius Maciollek and
  • Helmut Ritter

Beilstein J. Nanotechnol. 2014, 5, 380–385, doi:10.3762/bjnano.5.44

Graphical Abstract
  • ) experiments were carried out. Figure 3 shows two TEM images and corresponding size distributions with different ratios of silver nitrate to cyclodextrin containing polymer 1. The selected area electron diffraction (SAED) pattern of the Au nanoparticles 2 shows rings ascribed to Ag crystals of the face
  • a Phillips EM420 (Fa. FEI) microscope at 120 kV. The electron diffraction patternwas recorded for the selected area. The particle size and size distribution was determined by image analysis using AxioVision LE64 software. Turbidity experiments were performed on a Tepper cloud point photometer TP1
PDF
Album
Full Research Paper
Published 31 Mar 2014

Interaction of iron phthalocyanine with the graphene/Ni(111) system

  • Lorenzo Massimi,
  • Simone Lisi,
  • Daniela Pacilè,
  • Carlo Mariani and
  • Maria Grazia Betti

Beilstein J. Nanotechnol. 2014, 5, 308–312, doi:10.3762/bjnano.5.34

Graphical Abstract
  • by using a quartz microbalance. One single-layer (SL) is defined as the molecular density of flat molecules fully covering the graphene layer, and it corresponds to a nominal thickness of about 3.4 Å. Low energy electron diffraction (LEED) was used to check the symmetry of both clean and Gr-covered
PDF
Album
Full Research Paper
Published 17 Mar 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • drop-casting the particles (suspended in water) on carbon coated copper grid. The selected area electron diffraction (SAED) pattern analysis was carried out on the same grid. X-ray diffraction (XRD) X-ray diffraction (XRD) measurements of biosynthesized Gd2O3 nanoparticles were carried out by coating
  • corresponds to plane {400} of Gd2O3 nanoparticles (Figure 2C). Selected area electron diffraction (SAED) analysis (Figure 2D) of the biosynthesized Gd2O3 nanoparticles shows that the nanoparticles are crystalline in nature. Diffraction spots could be well indexed with the cubic structure of Gd2O3
  • electron diffraction (SAED) pattern recorded from the Gd2O3 nanoparticles. XRD measurements of biosynthesized Gd2O3 nanoparticles. XPS data showing the (A) Gd(3d), (B) C(1s), (C) O(1s) and (D) N(1s) core level spectra recorded from biosynthesized Gd2O3 nanoparticles film cast onto a Si substrate. The raw
PDF
Album
Full Research Paper
Published 07 Mar 2014

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

  • Annalena Wolff,
  • Walid Hetaba,
  • Marco Wißbrock,
  • Stefan Löffler,
  • Nadine Mill,
  • Katrin Eckstädt,
  • Axel Dreyer,
  • Inga Ennen,
  • Norbert Sewald,
  • Peter Schattschneider and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2014, 5, 210–218, doi:10.3762/bjnano.5.23

Graphical Abstract
  • stages of the growth process using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and electron diffraction measurements. Results In this bioinspired synthesis, stoichiometric Co2FeO4 discs of hexagonal, diamond
  • smaller irregularly-shaped subunits with diameters in the range of D = 5–15 nm. To study the orientation of these subunits a dark field measurement was performed. The marked reflex in the electron diffraction pattern (Figure 3d) was selected using the objective aperture and the TEM was switched back into
  • in Table 1, indicates that several phase transformations take place during the growth process. Electron diffraction images of the discs between t = 5 min and t = 2 d, displayed at the top of Figure 3, show an increase in orientation with time. The electron diffraction patterns are direct
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2014

Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

  • Mikhail Pashchanka,
  • Jonas Bang,
  • Niklas S. A. Gora,
  • Ildiko Balog,
  • Rudolf C. Hoffmann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2013, 4, 868–874, doi:10.3762/bjnano.4.98

Graphical Abstract
  • the product was also confirmed by TEM and SAED (Figure 4). Diffuse rings in the electron diffraction pattern (see inset in the upper left corner in Figure 4) suggest a random crystallite orientation and no preferential crystal growth direction. At a higher magnification it can be recognized that the
PDF
Album
Full Research Paper
Published 10 Dec 2013

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

  • Tanujjal Bora,
  • Karthik K. Lakshman,
  • Soumik Sarkar,
  • Abhinandan Makhal,
  • Samim Sardar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2013, 4, 714–725, doi:10.3762/bjnano.4.81

Graphical Abstract
  • polycrystalline nature of the nanoparticles is confirmed by the corresponding selected area electron diffraction (SAED) pattern (Figure 2c). The particle size distributions of all samples obtained from the respective TEM micrographs are also shown in Figure 2d–i. For the as-synthesized ZnO nanoparticles the mean
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2013

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • -TEM images of the initial microstructure of ncPd 1 (a) and ncPd 2 (b) with the corresponding selected electron diffraction pattern (SAED) as insets. Orientation maps overlaid with reliability derived from ACOM-TEM of the as deposited sample in a) cross section and b) plane view (insets shows the color
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • structure a of Fe90Sc10 nanoglass produced by consolidating Sc75Fe25 glassy clusters at a pressure of about 4.5 GPa is displayed (Figure 6) in the scanning tunneling microscopy image [17] of the polished surface of a nanoglass specimen. The selected-area electron diffraction (SAED) pattern of the Fe25Sc75
  • nanoglass (Figure 7a) evidences [18] the amorphous structure. In fact, the wide-angle electron diffraction patterns of the nanoglass and of a melt-spun glassy ribbon were indistinguishable for large scattering vectors (Figure 7b). Positron annihilation spectroscopy (PAS) was applied (Figure 8) to examine
  • scanning tunneling electron micrograph (STEM) of the polished surface of a Fe90Sc10 nanoglass specimen. The STEM reveals the granular structure of the Fe90Sc10 nanoglass produced by consolidating Fe90Sc10 glassy clusters with a pressure of 4.5 GPa [17]. (a) Selected electron diffraction pattern of a
PDF
Album
Review
Published 13 Sep 2013

A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

  • Alexander N. Obraztsov,
  • Victor I. Kleshch and
  • Elena A. Smolnikova

Beilstein J. Nanotechnol. 2013, 4, 493–500, doi:10.3762/bjnano.4.58

Graphical Abstract
  • resolution imaging with transmission electron microscopy (HRTEM) and electron diffraction analysis [15] confirm this conclusion and indicate that these flakes consist of a few graphene layers (of 5 to 50) oriented predominantly perpendicular to the substrate surface (see Figure 4). The thickness of only a
PDF
Album
Full Research Paper
Published 28 Aug 2013

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • stoichiometric layer was again deposited from a stoichiometric titania target. Device junction areas studied included 1.5 × 1.5 μm2 and 3 × 3 μm2. The device area is defined by the overlap of the bottom and top electrode. X-ray diffraction (XRD) and selected area electron diffraction (SAED) showed that the
  • characterization by TEM TEM characterization was performed using a JEM 2100F microscope. A customized single-tilt sample-holder tip was designed to accommodate the silicon/silicon-nitride substrates with the memristor device. The electron microscope was used to obtain selected area electron diffraction (SAED
PDF
Album
Full Research Paper
Published 07 Aug 2013

Ferromagnetic behaviour of Fe-doped ZnO nanograined films

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Thomas Tietze,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2013, 4, 361–369, doi:10.3762/bjnano.4.42

Graphical Abstract
  • “grain boundary foam” responsible for the magnetic properties of pure and doped ZnO. (a) Bright-field TEM micrograph of the nanograined pure ZnO thin film deposited on a sapphire substrate by the novel liquid ceramics method. Electron diffraction pattern (b) shows only rings from the ZnO wurtzite
PDF
Album
Full Research Paper
Published 13 Jun 2013

Photoelectrochemical and Raman characterization of In2O3 mesoporous films sensitized by CdS nanoparticles

  • Mikalai V. Malashchonak,
  • Sergey K. Poznyak,
  • Eugene A. Streltsov,
  • Anatoly I. Kulak,
  • Olga V. Korolik and
  • Alexander V. Mazanik

Beilstein J. Nanotechnol. 2013, 4, 255–261, doi:10.3762/bjnano.4.27

Graphical Abstract
  • . Raman spectroscopy data show that due to the close contact at the CdS/host-material heterojunction the lattice stress in the CdS nanoparticles rises during the deposition process, which manifests itself in changes of the position of the CdS LO phonon peak and of its width. TEM images and electron
  • diffraction patterns (insets) for In2O3(400) (a) and In2O3(400) after 30 SILAR CdS deposition cycles (b). Cross-sectional SEM image of the In2O3(400) film after 30 SILAR CdS deposition cycles (a) and AES profiles for In2O3(400)/CdS structures with different numbers of SILAR cycles (b). Scaling from sputter
PDF
Album
Full Research Paper
Published 11 Apr 2013

Structural and electronic properties of oligo- and polythiophenes modified by substituents

  • Simon P. Rittmeyer and
  • Axel Groß

Beilstein J. Nanotechnol. 2012, 3, 909–919, doi:10.3762/bjnano.3.101

Graphical Abstract
  • predicted a dihedral angle of 17.5° with a very flat rotational potential for angles from 0° to 30° whereas Almenningen et al. obtained an angle of about 34° using gas-phase electron diffraction [37]. There are known problems when using GGA-DFT to compute rotational barriers especially for conjugated
PDF
Album
Full Research Paper
Published 27 Dec 2012
Graphical Abstract
  • overvoltages, side reactions, such as hydrogen evolution, are avoided. Figure 7 displays transmission electron microscopy (TEM) images of representative (a) single- and (b) polycrystalline Cu nanowires together with their respective selected-area electron diffraction (SAED) pattern. The single-crystalline Cu
PDF
Album
Review
Published 17 Dec 2012

Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers

  • Abdel-Aziz El Mel,
  • Jean-Luc Duvail,
  • Eric Gautron,
  • Wei Xu,
  • Chang-Hwan Choi,
  • Benoit Angleraud,
  • Agnès Granier and
  • Pierre-Yves Tessier

Beilstein J. Nanotechnol. 2012, 3, 846–851, doi:10.3762/bjnano.3.95

Graphical Abstract
  • 0.347 nm. This value is very close to the interlayer distance of two graphene monolayers in graphite (0.335 nm). The presence of the graphene stacks was further demonstrated by electron diffraction (Figure 3c). The obtained diffraction pattern was very similar to the one recorded on Ni-filled carbon
  • atmospheric pressure and under argon flow. After annealing, the samples were cooled down at a rate of 12 °C/min. Scanning electron microscopy (SEM) imaging was performed at 5 kV on a JEOL JSM 7600 F microscope. Transmission electron microscopy (TEM) imaging and selected-area electron diffraction (SAED) were
  • ) Selected-area electron diffraction pattern recorded on a single wire. The 002 reflection indicated in (c) is attributed to graphitic carbon. (a) Normalized hysteresis loops of the coaxial nanowire array measured at 300 K with an applied magnetic field parallel (black curve) and perpendicular (red curve) to
PDF
Album
Supp Info
Letter
Published 11 Dec 2012

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • for the sample grown at a concentration of 20 mM. The ZnO nanorods grown on the paper supports are single crystalline, which was confirmed from the electron diffraction pattern shown in Figure 7b. The diffraction pattern was taken on the ZnO nanorod shown in the TEM micrograph in Figure 7a. The
  • 10 h; and (f) ZnO nanorods grown on paper at a concentration of 20 mM for 20 h. (a) Transmission electron microscopy (TEM) image of a single ZnO nanorod (b) Electron diffraction pattern showing the single crystalline structure. The planes from which the electron beam was diffracted to generate the
PDF
Album
Full Research Paper
Published 11 Oct 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities