Search results

Search for "feedback" in Full Text gives 226 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Tattoo ink nanoparticles in skin tissue and fibroblasts

  • Colin A. Grant,
  • Peter C. Twigg,
  • Richard Baker and
  • Desmond J. Tobin

Beilstein J. Nanotechnol. 2015, 6, 1183–1191, doi:10.3762/bjnano.6.120

Graphical Abstract
  • greater clarity, as it is a more efficient edge detector and is not low-pass filtered through the electronic feedback loops [23]. The z-scale on the amplitude images reflects changes in the height moved by the piezo sensors to maintain the engage amplitude setpoint. From the amplitude image in Figure 1b
PDF
Album
Full Research Paper
Published 20 May 2015

Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative

  • Chris Hellenthal,
  • Kai Sotthewes,
  • Martin H. Siekman,
  • E. Stefan Kooij and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2015, 6, 1116–1124, doi:10.3762/bjnano.6.113

Graphical Abstract
  • results and theoretical calculations, these effects only take place at tip–sample separations below 500 pm, i.e., in the z(V) regime of Figure 6. As such, any relaxation effects will be negated by the active feedback loop during z(V) measurements. If this were not the case, the onset of relaxation effects
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

  • Kai Braun,
  • Xiao Wang,
  • Andreas M. Kern,
  • Hilmar Adler,
  • Heiko Peisert,
  • Thomas Chassé,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2015, 6, 1100–1106, doi:10.3762/bjnano.6.111

Graphical Abstract
  • Information File 1), leading to a spectral narrowing of the luminescence of about 40% to 55 nm. Such a spectral narrowing along with the nonlinear intensity increase observed as a function of optical pump power is a reliable sign of signal amplification by positive feedback. This feedback directs a portion of
  • , Supporting Information File 1). Hence, a feedback of the emitted energy into the quantum system can occur. When our system is optically pumped, a large population of plasmon-induced hot electrons near the Fermi level is created, which can refill the hole in the HOMO. Thus, there is a feedback of energy into
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2015

Optimization of phase contrast in bimodal amplitude modulation AFM

  • Mehrnoosh Damircheli,
  • Amir F. Payam and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 1072–1081, doi:10.3762/bjnano.6.108

Graphical Abstract
  • feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing
  • on the feedback schemes [16][17][18][19][20][21][22][23][24]. In the first bimodal AFM configuration (bimodal AM) [15][16], the feedback acts on the amplitude of the first mode by keeping it at a fixed value during imaging while the second mode operates in an open loop. The ability of bimodal AM to
  • and detected. The feedback operates on the amplitude of the first mode while both second and third modes are in open loops. It has been shown the usefulness of the third mode to modulate the indentation [23]. A comparison of the trade-offs in sensitivity and sample depth have been performed with
PDF
Album
Full Research Paper
Published 28 Apr 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • signal from the tuning fork piezo [22][23]. The tip has been treated by annealing to 1200 °C in contact with a hot tungsten filament. The simultaneous current and frequency shift measurements were done in constant height mode. A very slow tunneling current feedback was applied for compensation of the
  • sample tilt. The reason to use current as a feedback, as opposed to using the frequency shift (Δf), is the possibility of doing measurements in the region of a negative frequency shift gradient (repulsive regime), even at room temperature, without enhanced risk of losing the tip apex. This approach is
  • specifically chosen for the conditions when the graphene contrast provided by the Δf is not giving atomic resolution in the attractive regime. Kelvin probe force measurements (KPFM) were also done in the constant-height mode, with a slow feedback between the measurement points, to compensate the tilt of the
PDF
Album
Full Research Paper
Published 07 Apr 2015

Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

  • Andrea Candini,
  • Nils Richter,
  • Domenica Convertino,
  • Camilla Coletti,
  • Franck Balestro,
  • Wolfgang Wernsdorfer,
  • Mathias Kläui and
  • Marco Affronte

Beilstein J. Nanotechnol. 2015, 6, 711–719, doi:10.3762/bjnano.6.72

Graphical Abstract
  • feedback loop in order to stop the current immediately after the opening of the junction. We used the same method previously employed for the electromigration of gold nanowires [26]. A typical example of the process is visible in Figure 1a. Above a certain voltage value, the I–V curves become strongly non
  • the resistance is observed [10]. When the measured resistance overcomes a fixed value corresponding to the complete formation of an open gap in the device, a feedback control of our electronics restores the voltage to zero very rapidly (<100 µs). The complete process takes approximately 10 to 20 s
  • al. [20], but with a different electroburning procedure (i.e., feedback controlled). Moving to the devices electroburned under vacuum, in 33 junctions (ca. 58%) we measured a sizeable tunneling current after the process, while only in eight (ca. 14%) we did not find any measurable current. Finally
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • AFM is equipped with an optical beam deflection setup to measure the deflection of the cantilever [10][11]. This setup also allows for the use of conventional silicon and silicon nitrite cantilevers using only the optical beam deflection setup for the feedback. Additionally, the instrument is designed
  • optical beam deflection setup for the feedback. In parallel, the positioning error (profile after removing the 1st order component) of the fast scan axis was recorded and is shown in Figure 2c. By comparing the measured stage position and the desired position (given by the control signal), the positioning
  • × 1024 pixels. Imaging was done in the intermittent contact mode of the AFM with a setpoint of 89% of the free amplitude of the cantilever. Due to the large step heights of up to 2 μm on the surface of the chip, and the corresponding high demands on the z-feedback loop the scan speed was set to 30 μm/s
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Influence of spurious resonances on the interaction force in dynamic AFM

  • Luca Costa and
  • Mario S. Rodrigues

Beilstein J. Nanotechnol. 2015, 6, 420–427, doi:10.3762/bjnano.6.42

Graphical Abstract
  • conditions [4] and at solid/liquid interfaces [5]. A complete overview is given in [3] and [6]. In AM-AFM, micro-sized cantilevers are conventionally excited at a frequency close to their first eigenmode. The oscillation amplitude of the tip is the feedback signal that is kept constant to obtain the sample
  • piezoelectric excitation (red), showing the presence of spurious resonances. Approach force curves were acquired in force feedback mode [17][18] at the mica/deionized water interface. The oscillation amplitude of the tip was 0.3 nm. Amplitude and phase were recorded and converted into conservative and
PDF
Album
Full Research Paper
Published 10 Feb 2015

Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

  • Horacio V. Guzman,
  • Pablo D. Garcia and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 369–379, doi:10.3762/bjnano.6.36

Graphical Abstract
  • first two flexural modes are excited and an amplitude modulation feedback controls the amplitude of the first mode [33]. The parameters used in the bimodal AM simulations are presented in Table 4. Figure 6 shows the tip response under the influence of excitation and the tip–surface interactions. The
PDF
Album
Full Research Paper
Published 04 Feb 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • (<20 nm), to ensure a close tip–surface distance and the set point amplitude is routinely set to 80% of the free amplitude for imaging when the feedback is active. Under these conditions, attractive forces dominate and, in consequence, it can be inferred that the AFM is operated in non-contact mode. In
  • current experiments we focus on the definition of line patterns. Prior to patterning, the AFM control feedback is disabled and the required voltage is applied. However, in order to keep a constant tip–surface distance, previously the surface inclination with respect to the X–Y piezo-scanning plane is
  • present paper. As far as the tips did not make contact with the surface (either by particle contamination or the surface or problems with feedback loop control) we did not observe tip wear. Discussion In Figure 6 the main results of the kinetics study of LAO-AFM are summarized. Figure 6a shows the line
PDF
Album
Full Research Paper
Published 19 Jan 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • , become complicated by feedback artefacts and stray capacitance even in vacuum [33][34][35]. In ambient environments, the interpretation of surface potential values increases in complexity due to the possible shielding of the surface by mobile adsorbates and the presence of a thin water layer, resulting
  • previously reported [40][41][42][43]. In general, open loop-KPFM does not require the application of a DC bias via a feedback loop and can be performed by utilizing either (i) both AC voltage and DC bias (referred to here as open loop bias spectroscopy, OLBS) [44], or (ii) AC voltage alone (referred to here
  • second harmonic cantilever amplitude (Aω and A2ω) and phase (θω and θ2ω) using lock-in techniques. Equation 2 predicts a linear dependence of Fω with respect to the probe–sample DC bias, which is minimized when Vdc = Vcpd. KPFM employs this principle via a feedback loop to minimize Aω. Depending on the
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • exploited in several types of devices, such as distributed feedback lasers [11][12][13][14][15], sensors [16][17], absorption enhancement for photovoltaics [18] or in dye-sensitized solar cells [19][20][21]. Furthermore, nanoparticle-based photonic crystals have been employed for switching applications [22
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM

  • Kfir Kuchuk and
  • Uri Sivan

Beilstein J. Nanotechnol. 2015, 6, 149–156, doi:10.3762/bjnano.6.14

Graphical Abstract
  • formulae for both conservative and dissipative forces. In FM-AFM, a cantilever is oscillated at its resonance frequency using an external driving force and a feedback loop. The motion of the cantilever is often modelled as a driven damped harmonic oscillator with an additional force, Fts, stemming from tip
PDF
Album
Supp Info
Letter
Published 13 Jan 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • simultaneously tracking topography. The resonant excitation power needed to keep the second eigenmode at a specific amplitude is mapped, while a phase locked loop (PLL) ensures resonant excitation. Topography feedback deconvolutes material specific effects acting on the second resonance. As the resonant
  • squeeze-film damping of the cantilever, the latter of which is roughly constant while in feedback. We used a thin-film blend of polystyrene (PS) and poly(methyl methacrylate) (PMMA) as a sample (PS–PMMA–15M, Bruker AFM probes); its separation into soft and hard domains makes it a widely used standard for
  • contrast for the softer globular areas with no visible effects from the topography feedback. At present, we are uncertain of the source of the apparent contrast inversion at the edges of the globular areas in Figure 4d versus Figure 4a, although it may be due to surface restructuring of the polymer blend
PDF
Album
Full Research Paper
Published 22 Dec 2014

Advanced atomic force microscopy techniques II

  • Thilo Glatzel,
  • Ricardo Garcia and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 2326–2327, doi:10.3762/bjnano.5.241

Graphical Abstract
  • properties [21] are based on the implementation of proportional-integral controllers to give realistic feedback behaviours. Stirling proposed a theoretical model for studying the SPM feedback in the context of control theory providing the possibility to understand and model the performance from SPM systems
PDF
Editorial
Published 03 Dec 2014

Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

  • Pascal R. Ewen,
  • Jan Sanning,
  • Tobias Koch,
  • Nikos L. Doltsinis,
  • Cristian A. Strassert and
  • Daniel Wegner

Beilstein J. Nanotechnol. 2014, 5, 2248–2258, doi:10.3762/bjnano.5.234

Graphical Abstract
  • transferred in situ into the cold STM (T = 5 K). All images where taken in constant-current mode. For the tunneling spectra the current I and the differential conductance dI/dV (via lock-in technique, modulation voltage 10–20 mV) were measured simultaneously as a function of sample bias V under open-feedback
PDF
Album
Full Research Paper
Published 26 Nov 2014

Characterization of 10,12-pentacosadiynoic acid Langmuir–Blodgett monolayers and their use in metal–insulator–metal tunnel devices

  • Saumya Sharma,
  • Mohamad Khawaja,
  • Manoj K. Ram,
  • D. Yogi Goswami and
  • Elias Stefanakos

Beilstein J. Nanotechnol. 2014, 5, 2240–2247, doi:10.3762/bjnano.5.233

Graphical Abstract
  • concentration of PDA dissolved in chloroform. The surface tension was measured using a paper Wilhelmy plate suspended in the water in the LB trough. The deposition conditions were regulated using surface tension and compression feedback control. This resulted in the formation of a closely packed film at the air
PDF
Album
Full Research Paper
Published 26 Nov 2014

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • contacting and the current feedback loop of the SPM software was opened. The contact to the molecule was established by approaching the tip vertically towards the surface; this approach was effected by downward movement of the hand of the operator. Over the course of HCM the current I flowing through the
  • junction and the frequency shift Δf were displayed on the screen of an oscilloscope and served as feedback signals for the operator. Formation (loss) of the contact was monitored in real time by a sharp increase (decrease) of I (cf. Figure 1b) or a kink in Δf [15][16]. After establishing the contact
  • the tip with the removed PTCDA molecule hanging on its apex towards the Ag(111) surface and applying a voltage pulse of 0.6–1 V. Afterwards the current feedback loop was closed and the manipulation area was scanned in constant current STM mode (a movie that was made of the scanned STM images can be
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • higher modes are excited by using constant drive frequency and amplitude without any feedback (i.e., in ‘open loop’ [2][3]). In such cases, as long as the oscillation is not chaotic, the user will generally be able to obtain an image, but imaging stability does not guarantee that the results are
PDF
Album
Full Research Paper
Published 25 Sep 2014

Probing the electronic transport on the reconstructed Au/Ge(001) surface

  • Franciszek Krok,
  • Mark R. Kaspers,
  • Alexander M. Bernhart,
  • Marek Nikiel,
  • Benedykt R. Jany,
  • Paulina Indyka,
  • Mateusz Wojtaszek,
  • Rolf Möller and
  • Christian A. Bobisch

Beilstein J. Nanotechnol. 2014, 5, 1463–1471, doi:10.3762/bjnano.5.159

Graphical Abstract
  • current Itrans through the surface while the third tip measures the STM topography and the potential, simultaneously. Therefore, a feedback loop adjusts the dc tunnelling voltage such that the dc tunnelling current becomes zero. Thus, for each lateral tip position the applied dc tunnelling voltage
PDF
Album
Full Research Paper
Published 05 Sep 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • determined from slopes of lines in Figure 9. In these experiments, the normal contact force was varied in a controlled fashion by changing the feedback setpoint and recording corresponding changes in frictional (torsion) forces. Adhesion as determined from force–distance curves was negligible so the normal
PDF
Album
Full Research Paper
Published 10 Jul 2014

Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

  • Lars Heepe,
  • Alexander E. Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 903–909, doi:10.3762/bjnano.5.103

Graphical Abstract
  • reviewers for constructive feedback. This work was supported by German Science Foundation (DFG, No. GO 995/10-1 and Project No. C-10 within SFB 677) and the Ministry of Economic Affairs, Employment, Transport, and Technology, Schleswig-Holstein, Germany within the programme „Zukunft Meer“.
PDF
Album
Full Research Paper
Published 25 Jun 2014

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

  • Xiaohong Wang,
  • Heinz C. Schröder and
  • Werner E. G. Müller

Beilstein J. Nanotechnol. 2014, 5, 610–621, doi:10.3762/bjnano.5.72

Graphical Abstract
  • that the stimulatory effect of bicarbonate ions on mineralization onto osteoblast-like SaOS-2 cells is strongly enhanced if the cells are exposed to polyP [64]. Finally, after hydrolysis of polyP through the alkaline phosphatase, the liberated orthophosphate inhibits in a negative feedback circle the
PDF
Album
Review
Published 12 May 2014

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • , the cornerholes, the molecules, and ‘off’ the molecules, with all the spectra having identical parameters. In order to eliminate artefacts in the subtraction due to the shift in height due to the topographic feedback, the 'on' spectra were first aligned (on the z axis) to the 'off' spectra by a least
PDF
Album
Full Research Paper
Published 01 Apr 2014

Control theory for scanning probe microscopy revisited

  • Julian Stirling

Beilstein J. Nanotechnol. 2014, 5, 337–345, doi:10.3762/bjnano.5.38

Graphical Abstract
  • Julian Stirling School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom 10.3762/bjnano.5.38 Abstract We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature
  • that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for
  • a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation. Keywords: AFM; control theory; feedback; scanning probe microscopy
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2014
Other Beilstein-Institut Open Science Activities