Search results

Search for "nanoscale" in Full Text gives 892 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • robustness, for example, a higher resistance to pulverization than Si, the durability of Ge-based anode is not sufficient for practical applications [14]. To overcome this limitation, nanoscale control and composite design are two effective strategies [15][16][17][18][19]. In addition to various Ge
PDF
Album
Full Research Paper
Published 26 Jun 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • . Nanotechnology has enabled the observation and analysis of the properties of objects at the nanoscale level, down to molecules and atoms. Then, by understanding and creating new nanostructures it became possible to create materials with unprecedented high functionality. Society has brought about amazing progress
  • at the nanoscale level while including various materials chemistry fields, as initiated by nanotechnology. This concept is defined as nanoarchitectonics (Figure 1) [1][2]. Nanoarchitectonics can also be considered a post-nanotechnology concept [3]. Nanotechnology was proposed by Richard Feynman in
  • the 20th century [4][5] whereas nanoarchitectonics was proposed by Masakazu Aono in the early 21st century [6]. Nanoarchitectonics is a methodology for architecting functional material systems from components at the nanoscale (i.e., atoms, molecules, and nanomaterials) following the footsteps of
PDF
Album
Editorial
Published 19 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • containing numerous layers and interfaces [1]. The capability to conduct local investigations at the nanoscale level that provide information on the electrical properties of materials and along physical interfaces is becoming crucial for solar photovoltaic device efficiency improvement [2]. Electrical
  • measurements based on scanning probe microscopy (SPM) allow for the analysis of two-dimensional (2D) features at the surface and along a physical cross section of nanoscale semiconductor structures. Among the wide variety of SPM techniques available [3], Kelvin probe force microscopy (KPFM) is an application
PDF
Album
Full Research Paper
Published 14 Jun 2023

Current-induced mechanical torque in chiral molecular rotors

  • Richard Korytár and
  • Ferdinand Evers

Beilstein J. Nanotechnol. 2023, 14, 711–721, doi:10.3762/bjnano.14.57

Graphical Abstract
  • , specifically the velocity–current characteristics and threshold currents. Our results can support the design of nanoscale mechanical devices. Model Model geometry (kinematics) Our classical model contains a particle (mass m) moving on a rigid path, which can rotate around an axis, see left part of Figure 1
  • of the rotor, but not its frequency. Hence, there is no net torque. Such devices can rotate under a particle current, but they cannot do work. Although they cannot operate as motors, these rotors can serve in nanoscale information storage and processing. The information readout can be performed in
PDF
Album
Full Research Paper
Published 12 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • containing functional groups are still present in GQDs even after hydrothermal treatment. Due to the nanoscale size of GQDs and a small number of graphene layers, the diffraction peak appears broad [35]. Using the FWHM of the diffraction peak, an average crystallite size of 2.69 nm was calculated for the
PDF
Album
Full Research Paper
Published 09 Jun 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • object it encounters, and the resulting optical force can be used to manipulate particles at the micro- or nanoscale. In this work, we present a detailed comparison through numerical simulations of the optical forces that can be exerted on polystyrene spheres of the same diameter. The spheres are placed
  • move to a region of high field strength to reduce its energy [3]. Unfortunately, due to the diffraction limit, light cannot be focused onto the subwavelength volume; so it is very difficult for optical tweezers to capture nanoscale objects. Recently, plasmonic nanotweezers have proved their capability
  • nanoscale polystyrene (PS) spheres in the slot of the all-dielectric nanostructures. All these spheres have their own response to the incident radiations (e.g., Mie resonances). However, we noted that due to the small size of the spheres and the relatively lower refractive index of the polymeric material
PDF
Album
Full Research Paper
Published 02 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • luminescence, and a desirable adsorption capacity that can enhance MOF–target analyte interactions and transduce these interactions into measurable optical responses. A nanoscale MOF (In-sbdc) with a significant quantum yield of 13% and stable emission in water, for instance, was synthesised by Liu et al. [42
PDF
Album
Review
Published 01 Jun 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • , communications, and many others [1][2][3][4][5]. In many nanoscale systems, thermal transport cannot be simply described as it would be at larger scales [6]. At such scales, the carriers of energy (such as phonons) have finite transit lengths that are no longer negligible compared to the system dimensions
  • of system design on nanoscale transport is particularly intriguing and has lead to the investigation of unique structures [10][11] in an attempt to better understand and develop manufactured devices. The introduction of additional surfaces and the reduction of direct paths through a system can force
  • dependencies for this are myriad and somewhat complicated to understand. In this work we explore the effect of kinks where the angle is different from the 90° bend commonly used in other studies. We construct nanoscale systems with kinks of varying angles (ranging from 0° to about 70°) in order to examine the
PDF
Album
Full Research Paper
Published 15 May 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • substrates show a strong absorption of light in the visible range, which is related to the phenomenon of surface plasmon resonance (SPR). The strongly nanoscale-rough surface causes a significant extension of the spectral range of SPR in comparison to thin silver layers. Based on the comparison of the light
PDF
Album
Full Research Paper
Published 03 May 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • particular the absence of graphite or nanoscale graphite. It is important to recall that graphene has been defined as a “single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure” with materials with more than one layer defined as “few-layer graphene” or “graphene
  • , Enabling innovation to meet UK Net Zero targets through physicochemical metrology of nanoscale advanced materials) for funding.
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • , Chiba 277-8561, Japan 10.3762/bjnano.14.35 Abstract The development of nanotechnology has provided an opportunity to integrate a wide range of phenomena and disciplines from the atomic scale, the molecular scale, and the nanoscale into materials. Nanoarchitectonics as a post-nanotechnology concept is a
  • -surface synthesis; Review Introduction Nanotechnology is a game changer that has innovated the course of scientific research. Nanotechnology innovations have unlocked mysteries at the nanoscale [1][2][3]. These research innovations have bridged the gap between nanoscale basic science and materials
  • ][35], efficient molecular identification [36][37][38], and device switching mechanisms based on nanoscale phenomena [39][40][41] have been revealed. The contribution of nanotechnology is not limited to the elucidation of such physical properties of materials. Nanotechnology has also contributed
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • cause little damage to adjacent healthy tissues due to extremely localized heating [3]. Generally, the reduction of material dimensions to the nanoscale, such as in graphene, carbon nanotubes (CNT) and polymers, leads to an enhancement of the PT effect due to factors such as improved thermal
  • characteristics such as the wavelength in plasmon resonance can be tuned and controlled by the properties of the nanoparticle such as size, shape, proximity to other particles, as well as the surrounding medium [6]. Indeed, advancements in such manipulation at the nanoscale has aided the use of plasmonic
  • regard, plasmonic nanomaterials with tunable energy absorption can help, and the tunability of such materials only manifests at the nanoscale as changes in the absorption of incident radiation. This tunability is of utmost benefit for PT applications as the region of the electromagnetic spectrum that is
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • nanobiotechnological processes to encourage the development of these converging technologies for a sustainable economic growth. The synthesis and the characterization of nanoscale biomaterials, the innovative applications of “smart nanoparticles”, and the technological/biological impact of nanoscale systems are just
  • ; nanotechnology applied in biology, medicine, food, environmental and agriculture sectors; environmental engineering and chemical engineering; nanoscale electrochemisty in biotechnology; computational nanochemistry in biotechnology; and life cycle assessment of nanobiotechnology. The works presented in this
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • ; Introduction In recent years, nanoscale studies have become an important research area thanks to the ever increasing means of synthesis, characterization, and application of nanoscale materials (1 to 100 nm). Progress and development in nanotechnology have started to make a difference in various areas
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • measurement. For NTA, ASTM 2834 provides workflows for planning NP experiments. Through the study of nanoscale extracellular vesicles, Bachurski et al. [68] provide some additional insights comparing the performance of different NTA systems to cryo-TEM and single-particle interferometric reflectance imaging
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • nanomedicine has yielded several relevant advancements since its beginnings in the early 2000s. The dissolution kinetics of poorly soluble drugs have been improved by the production of drug nanocrystals, enabling continuous drug release. Lipid molecular structures have been manipulated at the nanoscale to
  • research on the fabrication of polymer nanoparticles from low-energy nanoemulsions, focusing on phase inversion composition. We particularly emphasize their biomedical applications as drug carriers. 2 Nanoemulsions Nanoemulsions are constituted by nanoscale droplets (20–200 nm) dispersed in a continuous
PDF
Album
Review
Published 13 Mar 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • suspended disks made of high-index materials are another example of resonances to provide ultrahigh Q-factors [2]. However, above structures are still bulky. For example, the photonic crystal cavities need the surrounding periods to provide the bandgap, which is not favorable for nanoscale applications
PDF
Album
Full Research Paper
Published 06 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • . Thus, the combination of both techniques enables the customization of particle properties for particular applications. It is worth noting that some recently published review articles have paid attention to ways of controlling the morphologies, dimensions, and even the nanoscale modulation as well as
PDF
Album
Review
Published 03 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • levels of GSH peroxidases [106]. Based on the conditions in the TME, ferrous/ferric ions can catalyze H2O2 to produce hydroxyl radicals (•OH) through the Fenton reaction [39][107]. Nanoscale agents with ferroptosis function coated by cancer cell membranes can avoid surveillance of the body and travel to
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • targeting efficacy of nanomedicines. Various solutions have been proposed to improve mononuclear phagocytic system (MPS) evasion, extravasation at the tumor site, and diffusion through the dense collagen matrix of the solid tumors. Biomimetic, multifunctional, and multistage targeted nanoscale delivery
  • surface, triggered by protease degradation after tumor homing by the EPR effect [112]. Mesoporous silica vesicles (MSVs; dav = 3 μm) with high affinity to tumor vasculature were also described by Blanco et al. as a platform for the triggered release of various therapeutic nanoscale vectors (liposomes
  • tumor inhibition was achieved [115]. Lv et al. prepared multifunctional dendrimer nanoscale complexes composed of anti-EGFR aptamer-modified poly(amidoamine) (PAMAM) loaded with erlotinib and chloroquine (CQ) for NSCLC treatment. These cationic nanoparticles showed high condensation capacity for
PDF
Album
Review
Published 22 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • force spectroscopy; Introduction With the recent miniaturization of semiconductor devices, understanding the physical and electrical properties of semiconductor devices, such as the dopant concentration, dopant distribution, and defect level distribution, at the nanoscale has become important. Among
  • [1][2][3]. Therefore, direct observation of semiconductor surfaces with nanoscale spatial resolution will become even more important for understanding and controlling the effects of these properties on devices and for evaluating semiconductor device operation. Kelvin probe force microscopy (KPFM) is
  • future, high–low KPFS measurements with 2D scanning of the tip on the sample surface are expected to enable measurement of the local interface state density of the sample surface on the nanoscale. Therefore, the high–low KPFS method proposed in this study is expected to be widely used for sensitive and
PDF
Album
Full Research Paper
Published 31 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • controlling electromagnetic fields at the nanoscale through external manipulation of the materials’ properties. Here, we present the characterisation of a recently developed active plasmonic element [5] through two complementary experimental methods. Active plasmonic elements have applications in future
  • underneath and its ability to interact with electronic circuits [22]. The performance of the active element can be characterised in terms of modulation localisation and depth. Localisation addresses how confined the active control is at the nanoscale, while modulation depth is an indicator of how well the
  • distribution is investigated by means of scanning Joule expansion microscopy (SJEM) [32]. The technique provides a method to obtain the relative temperature distribution at the nanoscale starting from the measurement of induced thermal expansion, which can be directly mapped in a standard AFM-based image using
PDF
Album
Full Research Paper
Published 16 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • alloy thin film together with the shadowing effect to form dispersed columnar thin films. The subsequent dealloying leads to film structuration at the nanoscale due to porosity formation. The influence of three different dealloying solutions (i.e., NaOH, HCl, and H3PO4) on the SERS properties of the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • flexural rigidity is about three times that of graphene but it can be bent to small curvatures without fracturing. These properties make nanoscale talc a promising candidate for the application [14][15][18] as reinforcement for polymers and other composites, including biocompatible materials, and van der
PDF
Album
Full Research Paper
Published 09 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • nanoscale surface patterns, whereas conventional photolithography methods are limited by diffraction during the illumination step and under/overetching during the development process [17]. In soft lithography, the deformation and collapsing of rubber stamp structures occur due to the adhesion between the
  • can be exploited to achieve nanoscale patterns using microscale features on a stamp. Importantly, the lateral diffusion-free CLL process should maintain tiny gap features without hassles of random molecular movements and high resolution patterns are expected after this operation. We anticipate two
  • fabricated with inexpensive photomasks. With this technology, we foresee that the straightforward generation of versatile nanoscale patterns can further push the boundaries of CLL, and expand its applications in solving conventional biosensing, nanoelectronics, and semiconductor problems. Visualization of
PDF
Album
Full Research Paper
Published 04 Jan 2023
Other Beilstein-Institut Open Science Activities