Search results

Search for "semiconductor" in Full Text gives 633 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • Contrary to traditional semiconductor basic elements (transistors), tunable kinetic inductors (TKIs), as well as nonlinear elements (Josephson junctions), are not fabricated in a substrate. This allows for 3D topology benefits, which are especially important for deep ANNs. The F1/s/F2/s superlattice, in
  • interface of the bulk semiconductor electrode, with thickness LS = 10ξS. In addition, we considered the proximity effect of an artificial ferromagnetic material (AFM), consisting of alternating thin superconducting (LS = 1ξS) and ferromagnetic layers, with an exchange energy of H = 10TC. In an AFM, every
  • ). The main source of the superconductivity is the bulk semiconductor layer, while the thin s-layers only slightly support the pairing amplitude coming from the source. Figure 2b shows the spatial distributions of the anomalous Green’s function at the first (n = 0) Matsubara frequency, F1(x), for
PDF
Album
Full Research Paper
Published 07 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • the deposited metal–semiconductor contact interface. Recent work has shown that irradiation-induced heating of the electrode area can reverse majority carrier polarity in MoTe2 [31], while pre-treatment with a broad-beam argon ion source can decrease the contact resistance of Ni-MoS2 two-fold [32]. In
  • -probe geometry. Thus, the absolute values of μ extracted here (approx. 1 cm2 V−1 s−1) are limited by the contact resistance between the gold and the MoS2 [40]. We now consider the effect of irradiating the metal–semiconductor interface. We treated two FETs within each IR regime. For one of the devices
  • the interface at this delivered dose. It may be expected that an increase in the Schottky barrier height will occur if the normally pinned Fermi level [42] is now a function of the physical state of the beam-altered metal–semiconductor interface. Ion beam pre-treatment of the contact region before
PDF
Album
Full Research Paper
Published 04 Sep 2020

Structural and electronic properties of SnO2 doped with non-metal elements

  • Jianyuan Yu,
  • Yingeng Wang,
  • Yan Huang,
  • Xiuwen Wang,
  • Jing Guo,
  • Jingkai Yang and
  • Hongli Zhao

Beilstein J. Nanotechnol. 2020, 11, 1321–1328, doi:10.3762/bjnano.11.116

Graphical Abstract
  • ) [1][2][3]. TCFs serve as the front electrode of thin film solar cells. Up to now, the solar energy conversion efficiency is about 23.3% [4], and it is important to increase the photovoltaic power generation efficiency, as well as the performance of the front electrode. The intrinsic semiconductor
  • successfully prepared from N-doped SnO2 films. Through Al/N co-doping, a p-type SnO2 semiconductor thin film with excellent electrical properties was prepared. The resistivity, hole concentration and hole mobility were 7.1 × 10−3 Ω·cm, 6.24 × 1019 cm−3 and 14.1 cm2·V−1·s−1, respectively [8]. Doping SnO2 with F
  • band minimum (CBM) and the valence band maximum (VBM) are located at the same G point, which is consistent with the calculation results [14][15] indicating that SnO2 is a direct bandgap semiconductor. In this work, the calculated bandgap is 1.28 eV, which is consistent with previous calculation results
PDF
Album
Full Research Paper
Published 03 Sep 2020

Cryogenic low-noise amplifiers for measurements with superconducting detectors

  • Ilya L. Novikov,
  • Boris I. Ivanov,
  • Dmitri V. Ponomarev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1316–1320, doi:10.3762/bjnano.11.115

Graphical Abstract
  • superconducting sensors and semiconductor detectors [19][20]. Schematic of the 0–120 kHz cryogenic LNA based on paired SSM2210 transistors. The important component values are: R1 = R2 = 100 Ω, R3 = R4 = 4.3 kΩ, C5 = 470 nF. The capacitors are realized in 0402 package (C0G type) and the resistors are realized as
PDF
Album
Full Research Paper
Published 02 Sep 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • standing topics of various investigations because silicon is still the most widely used semiconductor material for a broad range of micro- and nano-electromechanical systems, microelectronics, and photovoltaics [1][2]. Silicon nanostructures, such as bottom-up-grown nanowires [3], were also synthesized
  • serving as multifunctional platforms for field-effect transistors [4][5][6], photovoltaic devices [7][8][9][10] and miniaturized chemical sensors [5][11][12]. A key element for many of those devices are high-quality nanometer-scale semiconductor junctions, such as pn-junctions that ensure the intended
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • triselenide; band structure; excitons; optical spectroscopy; reflection and absorption spectra; Introduction Antimony selenide (Sb2Se3) is an inorganic semiconductor compound with interesting photoelectric properties. This material has a high absorption coefficient (≈105 cm−1) in the region of maximum solar
  • for lower temperatures. Sb and Se, at a semiconductor purity В5 level (99.9999%), were used as the initial precursors and placed into a container that was evacuated to a residual pressure of 10−5 mmHg. For a thorough mixing of the reacting components in the liquid phase, a rocking device and an
  • crystal lattice, Sb2Se3 is a 2D semiconductor with a layered structure in which the Sb and Se atoms are connected with three other atoms of the opposite type, which in turn are connected within the crystal through weak secondary bonds. Figure 2 shows the absorption spectra of the Sb2Se3 crystal (thickness
PDF
Album
Full Research Paper
Published 16 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • of GNRs with precise width are challenges concerning these materials. In addition to the electrical properties of GNRs, the use of these materials for the manufacturing of optical detectors has been extensively investigated. Another graphene semiconductor material are graphene nanomeshes (GNMs). The
  • used different atoms such as nitrogen, fluorine, and hydrogen to passivate the edge atoms, which yielded different results for the gap size. All these challenges make the production of GNR-based semiconductor materials difficult. However, these challenges are somewhat alleviated in GNMs. Table 1
PDF
Album
Full Research Paper
Published 15 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • use of composite systems of dielectrics (TiO2, ZnO) and metallic NPs has gathered increasing attention regarding SERS applications, because the plasmonic enhancement provided by metallic NPs can be combined with the optical properties of the semiconductor such as light trapping, scattering, and
  • abovementioned influence of the TiO2 surface on the size of the Au NPs (and consequently their plasmonic properties), a first hint can be found in the optical properties of semiconductor nanostructured materials. Their light-scattering, light-trapping and antireflection abilities, have already been reported to
PDF
Album
Full Research Paper
Published 14 Jul 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • Electrochemical technology became an established and cost-effective approach for the preparation of porous semiconductor matrices and arrays of nanowires with tailored architecture at the submicrometer scale [1][2][3]. Semiconductor nanotemplates provide many possibilities for nanofabrication through
  • electrochemically filling the pores with metallic nanostructures such as nanowires or nanotubes, resulting in the production of 2D metallo-semiconductor interpenetrating networks, which are promising for various nanoelectronic, optoelectronic, plasmonic, and nanophotonic applications [4][5][6]. While the growth of
  • nanostructures, including nanowires. Semiconductor nanowires, particularly III–V compound nanowires, show potential for their use as active components in solar cells [7][8][9][10], photodetectors [11], light-emitting diodes [12], transistors [13], and other applications. A uniform array of parallel nanowires
PDF
Album
Full Research Paper
Published 29 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • ; photoluminescence; photosensitivity; spin coating; thin films; ZnMgO semiconductor alloy; Introduction The ZnMgO solid solution system is of interest due to the possibility to tailor many important physical properties by varying their composition. This alloy system covers a wide ultraviolet (UV) spectral range
  • ][25][26][27][28][29][30][33][34]. The choice of the substrate is determined by the application. In particular, glass, quartz or sapphire substrates are usually used for photodetectors in the metal–semiconductor–metal (MSM) configuration, including Schottky photodetectors [1][19][24][25][28][29][30][31
  • large band tails with both the incident and scattered photons in the Zn0.60Mg0.40O sample. The prepared ZnMgO thin films were tested for photodetector applications in the metal–semiconductor–metal (MSM) design configuration with coplanar metal Pd contacts in our previous paper [29]. The films
PDF
Album
Full Research Paper
Published 12 Jun 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • Wagner and Ellis about the possibility to use a vapor–liquid–solid (VLS) process to grow semiconductor nanowires (NWs), significant work has been published on the production of nanowires [1][2]. It was demonstrated that NWs of different materials can be grown on different substrates and can be
PDF
Album
Full Research Paper
Published 28 May 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • transport in semiconductor devices [7]. Pristine substrate surfaces of HOPG and Si themselves can induce orientation control over the growth of MPc structures without the aid of additional templating layers. In our earlier work, we have observed that orientation and molecular packing of nonplanar PbPc
PDF
Album
Full Research Paper
Published 19 May 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • to semiconductor electronics for supercomputing applications [3][4][5]. Merging it with magnetism [6][7][8] has given a birth to superconducting spintronics [9][10]. The latter concept was implemented in the US Cryogenic Computing Complexity (C3) Program [11][12][13] with the goal “to demonstrate a
PDF
Album
Full Research Paper
Published 15 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • Technology, Ministry of Education, Research Institute of Laser Engineering, Beijing University of Technology, No. 100 Pingle Park, Chaoyang District, Beijing 100124, People’s Republic of China 10.3762/bjnano.11.59 Abstract Plasmonic metal/semiconductor composites have attracted great attention for efficient
  • theoretical optimal structure of the plasma metal–semiconductor heterojunction. Having this background in mind, we decided to prepare a TiO2 nanocolumn (TNC) structure by using AAO in combination with ALD, in which Ag particles could be selectively supported separately outside and inside the nanocolumns. Most
  • indirect bandgap semiconductor, since the grains are small and the energy levels are discrete: In Equation 1, h is Plank’s constant (6.626 × 10−34 J s), ν is the frequency of light, and Eg represents the bandgap energy. For the calculation of Eg by the Tauc plot absorbance the value of the absorption (Abs
PDF
Album
Full Research Paper
Published 05 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • annealing on the Si substrate obtained using energy-dispersive X-ray spectroscopy (EDXS) are displayed in Table 1. A reduction of the oxygen content was observed after annealing. The content of metal and semiconductor materials accordingly increases. Si as substrate material shows the highest content. The
PDF
Album
Full Research Paper
Published 27 Apr 2020
Graphical Abstract
  • rather high transmission probabilities. Electrons with other energies have an extremely small chance of passing through. This causes RTDs to exhibit NDR in their current–voltage characteristic. Conventionally, RTDs are made by vertical stacking of bulk semiconductor materials with different bandgap
PDF
Album
Full Research Paper
Published 24 Apr 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • silver target of 60 × 5 mm in size and purity of 99.99% as the OTFT electrode material was purchased from ZHNOGNUO New Material Co., Ltd., (Beijing, China). Pentacene as the semiconductor layer was used as purchased from Sigma-Aldrich and dissolved to a concentration of 5% in 1,2-dichlorobenzene
PDF
Album
Full Research Paper
Published 20 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • bronze (HxMoO3) was formed after exposure to UV radiation, making MoO3 quasi-metallic rather than semiconducting [13][14]. Thus, it is of highest priority to produce MoO3 dispersions of high concentrations and yields while maintaining the semiconductor properties of MoO3. In an attempt to address the
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • Wei Fang Liang Yu Lan Xu National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China 10.3762/bjnano.11.50 Abstract Inorganic semiconductor oxides loaded on composite nanofibers (CNFs) have been widely applied in
  • three times, and the degradation rate remained above 90%. Keywords: electrospinning; composite nanofibers; heterostructured CuO–ZnO; hydrothermal synthesis; photocatalysis; semiconductor oxide; Introduction Water remediation is one of the main scientific research subjects regarding environmental
  • oxidize species adsorbed on the semiconductor material. However, the high degree of recombination of charge carriers is disadvantage [6]. The coupling of two different semiconductors can yield an efficient charge separation, leading to a vector transmission of photogenerated electrons and holes from one
PDF
Album
Full Research Paper
Published 15 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • , semiconductor quantum dots suffer from toxicity and are susceptible to oxidation. In this context, atomically precise gold nanoclusters protected by thiol monolayers have emerged as a new class of luminescent nanomaterials. Low toxicity, bioavailability, photostability as well as tunable size, composition, and
  • [18][19]. Luminescent nanomaterials including semiconductor quantum dots, carbon dots, metal-doped nanoparticles, noble-metal nanoparticles, and organic–inorganic hybrid nanoparticles, have been studied for their ultrabright photoluminescence (PL) [20][21][22][23]. Semiconductor quantum dots (SCQDs
PDF
Album
Review
Published 30 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • of studies on semiconductor particles ligands or capping agents are used that bind to the surface of the particles covering them with an electrically insulating shell. Since the transport of charge carriers and/or energy across interfaces is desirable for a variety of applications, the use of π
  • ligands are influenced by the presence of a semiconductor and vice versa. Here ammonium-modified azobenzene compounds were selected as prototypes for molecular switches and organic–inorganic hybrid perovskites as semiconductor materials. The class of ammonium–lead–halide phases as prototypes is peculiar
  • synthesis of 2D and 3D hybrid perovskite phases. The energy transfer mechanisms are influenced by the length of the molecular spacer moiety, which determines the distance between the π system and the semiconductor surfaces. We find huge differences in the photoswitching behaviour between the free, surface
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • is compared to values of ≈100 MW for conventional semiconductor complementary metal–oxide-semiconductor (CMOS) technology. In addition to heat dissipation, another issue is the speed of processing. It has been shown that the operational frequency of superconducting logic can be at least 100 times
PDF
Album
Full Research Paper
Published 03 Mar 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • tourmaline-based functional composite photocatalysts for the treatment of organic contaminants in water. Keywords: 0D/2D CuO; organic contaminants; photocatalytic activity; photoinduced charge separation; tourmaline; Introduction Developing a novel semiconductor with excellent photoreactive activity toward
  • -type CuO semiconductor is ≈1.2 eV [6]. The application of CuO covers the fields of photocatalytic degradation of organic contaminants [7], photocatalytic reduction of CO2 [8][9], photocatalytic splitting of water [10], etc. Nanoscale CuO has been widely studied owing to its increased surface defects
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • applications. These materials are also interesting as supports for low-dimensional metals for catalysis, while recent work has shown increased interest in using 2D materials in the electronics industry as a Cu diffusion barrier in semiconductor device interconnects. The interaction between different metal
  • of adsorbed copper can be seen for all configurations. Conclusion The adsorption of metal species on semiconducting supports such as 2D monolayers of MoS2 is a subject of significant interest in a range of applications, particularly in catalysis and, more recently, in semiconductor nanodevices where
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • of semiconductor quantum dots [2]. Arrays of metallic nanoparticles or nanowires aligned on dielectric surfaces with nanoripples are ideal for research on plasmonics [3]. Ag nanoparticle arrays created on rippled silicon surfaces have demonstrated excellent sensing of molecules through surface
PDF
Album
Full Research Paper
Published 24 Feb 2020
Other Beilstein-Institut Open Science Activities