Search results

Search for "dynamic" in Full Text gives 778 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • particles used for pGFP transfection. Supporting Information Supporting Information File 72: Supporting Information contains dynamic light scattering (DLS), photoluminescence spectra, and zeta potential analysis of SPION@bPEI, SPION@bPEI/pDNA, SPION@bPEI-Erb, SPION @bPEI-Erb/pDNA, and SPION@bPEI-Erb/pDNA
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • electrophoresis. All samples moved towards the positive potential due to the negatively charged PMA coating (Figure 2d). The colloidal stability (i.e., hydrodynamic size, surface charge, and polydispersity index, PDI) of NPs was assessed using dynamic light scattering (DLS). All NPs (PMA-coated, and drug-attached
PDF
Album
Full Research Paper
Published 02 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • distinct features appear with high drive amplitudes as the fundamental assumption of permanent contact is lost [24][25][26][27]. Though nonlinear phenomena in CR-AFM have been connected to the mechanism of detachment in these prior works, less is understood about the dynamic response of the cantilever
  • experimental measurements in Figure 1a reveal interesting features in the dynamic behavior of the cantilever as it is driven by increasing the harmonic excitation amplitude. At the lowest drive amplitude, the response amplitude frequency sweep displays linear behavior, that is, a symmetric resonance peak over
  • , the equilibrium indentation Δ* is defined as: where w*(L1) is the equilibrium deflection of the cantilever at the location of the probe tip L1, shown in Figure 5b, and Z is the undeflected tip position (upward) relative to the undeformed sample surface. While vibrating, the dynamic indentation Δdyn is
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • applied in the study of dynamic properties of liquids including diffusion and slip flow behavior, and in the prediction of the slip length at the nanoscale [35][36][37]. Owing to the rapid development of technology, experimental studies of flow boundary conditions have been successfully extended to
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • flexible console with a sharp tip at the end. Two main classes of scanning methods can be distinguished, namely contact and dynamic scanning. During contact scanning, the tip is pressed against the surface and the pressing force is controlled by the deflection of the console. A similar way to control the
  • interaction of the probe with the sample is used in off-resonance dynamic modes [6]. Although they have various names, depending on the specific manufacturer (PeakForce Tapping, Hybrid Mode, Digital Pulsed Force Mode), a common feature of these methods is that the transition to the contact is carried out
  • classical contact mode, the friction force can be measured; when using off-resonance dynamic modes, stiffness and adhesion in the samples can be determined. Obviously, in determining the mechanical properties, the force of tip–surface interaction should be somewhat greater than that required if the task is
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • gradient or a thermal gradient. The diffusivity and dynamic viscosity affect the way in which mass is transported on the substrate. These gradients cause a circulatory flow of fluid, influence the mass transport, and eventually result in differently patterned fractal structures. The effects are
  • diffractograms of Si NWs and Si/WO3 NWs. Figure 17g–j demonstrates the dynamic response of composite and pure Si NWs to NO2 at different concentrations at room temperature, and the response of the composite to different gases. The composite sensor with p–n heterojunctions successfully transferred charge carriers
  • , respectively. Figure 21h and Figure 21i show the response as function of the concentration of the HOCSD sensor and response transients towards 50 ppm of HCOOH at 260 °C, respectively. Figure 21j and Figure 21k show the dynamic response curve for N2H4 and n-BuNH2 with varying concentrations at an operating
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • the aggregated state and can be used for imaging [51]. Importantly, NI exhibits hydrophobicity and π–π stacking due to the aromatic moieties, and is prone to dynamic aggregation, which can be used in self-assembled construction units [52]. For example, Hsu et al. [53] self-assembled NI and
PDF
Album
Review
Published 12 Oct 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • Cell, USA). NOR@IONP synthesis, at each of the respective pH, were performed with 3 distinct replicates. Nanoparticle characterization The hydrodynamic diameter of nanoparticles was determined after re-dispersing in milli-Q water and loading the sample in a cuvette for dynamic light scattering (DLS
  • nanoparticles. (a) Dynamic light scattering plot of number (%) v/s size (nm) of the nanoparticles in solution at the end of synthesis (n = 3). (b) Transmission electron microscopy image with a 50 nm scale bar. (c) X-ray diffraction plot indicating the Bragg’s 2θ diffraction angles identical to peaks observed
  • for crystalline iron oxide. (d) FTIR spectrum of transmittance v/s wavenumber, depicting major functional groups of iron oxide and NOR. Characterization of NOR@IONPpH10 nanoparticles. (a) Dynamic light scattering plot of number (%) v/s size (nm) of the nanoparticles in solution at the completion of
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • this special case, the two definitions of the entropy above are equivalent. In this context, it is important to mention that during agglomeration, which is a dynamic process, the number of objects is not constant. At the beginning of the agglomeration process, the number of initial particles is Ntot
PDF
Album
Full Research Paper
Published 29 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • 1 μm formed by isotropic etching with static and dynamic etching steps [88]. Bolton et al. produced tall hollow silicon microneedles by three-step DRIE process [89]. Hamzah et el. fabricated sharp solid silicon microneedles, via wet etching with HNA, with approximately 160 μm height and a base
PDF
Album
Review
Published 13 Sep 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • the dynamic formation process at that point, during which the wax could also be released into the surrounding area again. The process of secondary alcohol tubule formation was shown by recrystallization of N. nucifera and T. majus wax on HOPG [27][28]. The formation of secondary alcohol tubules
  • . This clearly shows that the crystallization process is determined by crystal-forming molecules and by the underlying substrate. It was demonstrated that AFM is a suitable tool to study dynamic processes, even in soft materials such as natural wax. With this technique it was possible to record the
PDF
Album
Full Research Paper
Published 20 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • of images. Hence, the bottleneck can shift from data acquisition to data processing. Here machine learning in general and CNNs in particular can efficiently and quickly process the images to identify and quantify dynamic processes. The complexity of such analysis is much greater than when the CNN
PDF
Album
Review
Published 13 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • . The energy maps of the interaction between several tips and samples under different conditions are simulated in dynamic and quasi-static modes. The molecular dynamics simulation details and main steps of reconstruction algorithms are presented. Then, several reconstruction results are conducted to
  • dynamics simulation To test the effectiveness of the reconstruction algorithms we perform molecular dynamics simulations of AFM imaging in different conditions. The dynamic process (AM mode) and quasi-static process (the relative position of tip–sample remains unchanged in the simulation) are separately
  • molecular dynamics simulation. Zc is the distance between the virtual atom at rest and the sample surface. The dynamic response of the tip is determined by the excitation of the virtual atom and tip–sample interactions. In the simulation the tip is parallel to the sample surface and the scanning is done in
PDF
Album
Full Research Paper
Published 29 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • paramagnetic nanoparticle chains. They used a predefined dynamic magnetic field that could controllably spread and fragment the particle chains. This is an effective strategy that shows that the assembly and disassembly process is reversible. Swarms of MNR paramagnetic nanoparticles moved together in the form
PDF
Album
Review
Published 19 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV–vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions
  • biological fluids, obtained from animal experiments. A multimethod approach was used to examine their behaviour and transformation under experimental conditions relevant for in vivo settings by performing dynamic light scattering (DLS), electrophoretic light scattering (ELS), graphite furnace atomic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • hydrodynamic diameter (Smoluchowski's approximation) of the as-prepared- (as-loaded) and the partially dissolved nanoceria was determined by dynamic light scattering (DLS) using a Brookhaven 90Plus Particle Size Analyzer. The zeta potential (0.5 mg/mL) from pH 0.5 to 13, adjusted with nitric acid and sodium
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • average size of 34 ± 14 nm. The temperature experiment results showed a higher enhancement with temperature increase. Performed simulation studies revealed a slowdown of the mobility of the water molecules close to the surface of AgNPs. Keywords: Dynamic lattice liquid (DLL) simulations; liquid water
  • the OH stretching vibration region can give an idea of the dynamic supramolecular structure of water. There are many models of water structure in the liquid phase. These are generally grouped into two types: models with a continuum of geometric and energetic states (assuming tetrahedral coordination
  • AgNPs. Therefore, one can simply conclude that more energy is needed to destroy the water structure in the AgNPs dispersion than in pure water. Simulation studies Dynamic lattice liquid (DLL) simulation studies based on the face-centred cubic (FCC) lattice approach were performed, in which averaged
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • human serum albumin (HSA), fibrinogen and immunoglobulin (IgG), metallothionein (MT), and ceruloplasmin (CP), forming a protein corona (PC) during silver homeostasis [121][122]. The PC is a highly dynamic system and its composition dynamically changes over time, undergoing various transformations until
  • , UV–vis spectroscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), dynamic light scattering (DLS), among other techniques [33]. The basic principles of the techniques mentioned here are detailed in the following sections. Each AgNPs is unique, depending on its size, state of
  • sample stored at 4 °C leading to an overlap, which indicates size and shape stability of the nanoparticles [48]. Dynamic light scattering: Historically, the first approaches to describe interactions between light and nanostructures were published in the early 20th century. Currently, the most popular
PDF
Album
Supp Info
Review
Published 14 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • +90°. Therefore, the dynamic focusing with tilt angle was successfully used. The thickness was measured by the cross-section technique of the SEM analysis, with a margin of error of ±5% (2–5 nm) compared to a standard 100 nm thick sample. Optical transmission spectra were acquired using a UV–vis–NIR
PDF
Album
Full Research Paper
Published 19 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • CO was measured in a dynamic regime using the CO/N2 gas mixture in flow mode. The CO/N2 mixture was fed at a rate of 2 L/h for aperiod of 10 min. We note that it was not possible to set a repeated exposure to analyte gas and Trec in a stationary mode for technical reasons. In the stationary regime
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges

  • Qingchun Wang and
  • Wai Ting Siok

Beilstein J. Nanotechnol. 2021, 12, 330–342, doi:10.3762/bjnano.12.27

Graphical Abstract
  • potential to advance conventional intracranial electroencephalography (iEEG) by utilising brain-compatible soft nanomaterials. The resultant technique has significantly high spatial and temporal resolution, both of which enhance the localisation of brain functions and the mapping of dynamic language
  • characteristics of signals. Indeed, in recent years, the modular view of brain functions has fallen out of favour, and researchers generally believe that various brain regions function simultaneously and interactively. New analysis methods, such as functional connectivity and dynamic causal modelling, have been
  • used to model dynamic brain networks. To better examine the temporal relation of cortical activities, iEEG would be an ideal method. Intracranial studies on aphasia Characteristics of intracranial recording The iEEG technique provides a promising opportunity to validate and extend current findings from
PDF
Album
Review
Published 08 Apr 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • pristine AgNPs, including dynamic light scattering (DLS), UV–vis spectroscopy (UV–vis), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS). DLS gave a Z-average hydrodynamic size of 33.7 ± 0.7 nm (mean ± standard deviation) and a PDI (polydispersity index) of
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • FITC–clathrin was measured in A549 cells exposed to CavME inhibitors (i.e., F and N). Discussion The internalization of nanoparticles is a dynamic energy-dependent and highly regulated process, affected by physicochemical characteristics of nanoparticles (e.g., shape, size, surface chemistry, and
  • characteristics of these nanoparticles in the solvent and culture medium are shown in Table 1. Dynamic light scattering (DLS) Particle size distribution and zeta potential of the surface-modified MNPs in stock solution and culture medium were determined by DLS using a Zetasizer Nano-ZS (Malvern Instruments, UK
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021
Other Beilstein-Institut Open Science Activities