Search results

Search for "efficiency" in Full Text gives 983 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • influence and to obtain clear Lorentzian resonances, we applied a low-power broadband light source and finely tuned the illumination spot to obtain maximum excitation and collection efficiency of the setup for each mode. Different from the method applied in [30], the illumination spot size is not the same
  • as the cavity since the large cavity size (ca. 20 μm) would need a large defocus or an objective with low magnification, which seriously degrades the collection efficiency. By finely scanning the illumination position on the sample, resonances were obtained around 1555 and 1582 nm, as presented in
  • Figure 4b and Figure 4c. Interestingly, the resonance peaks around 1582 nm shift in the spectra when the position of the excitation spot is gradually varied, as shown in Figure 4c. The reason of this dependence is the different excitation efficiency at the different illumination positions, which is
PDF
Album
Full Research Paper
Published 27 Apr 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • step in order to minimise processing time and to maximise separation efficiency. To investigate if Raman spectroscopy can be used for this purpose, a fresh sample of GNPref was prepared as described above, using the same processing conditions. Instead of fresh graphite however, the sediment from the
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • to a traditional FGC with all-focusing gratings. By optimizing the structural parameters of the CAE, the combination of a tapered linear grating and the CAE can improve the coupling efficiency to 8.61%, which is twice as large as that of the traditional MIR grating couplers. To the best of our
  • knowledge, it is the highest coupling efficiency in a full-etch grating coupler based on Ge-on-Si. Moreover, the proposed grating coupler can be used for refractive index (RI) sensing, and the maximum sensitivity is 980.7 nm/RIU when the RI changes from 1 to 1.04. By comparing with traditional grating
  • -Si grating coupler with an inverse taper excitation, operating near 3.8 μm wavelength with a maximum coupling efficiency of −11 dB (7.9%) [11]. In 2017, Kang et al. designed and experimentally demonstrated a focusing subwavelength grating (SWG) for an efficient coupling of MIR light to a suspended
PDF
Album
Full Research Paper
Published 06 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers
  • efficiency in solar steam generation (SSG), three factors must be considered, namely solar light absorption, photothermal conversion efficiency, and vaporization efficiency (Figure 1). In addition, the cost of the materials must be taken into consideration as large quantities at low cost are required
  • applications will be briefly discussed in the last part. Solar steam generation absorbers Numerous studies have been conducted of various materials and structures of solar energy absorbers for SSG. To achieve a high conversion efficiency in solar steam generation, three key factors must be considered. The
PDF
Album
Review
Published 04 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • production of hydrogen energy is focused mainly on hydrocarbon reforming, which is a low-efficiency and environmentally unfriendly process [1][2]. As an alternative, water electrolysis using renewable energy sources has recently been extensively studied [3]. The main limitation to the efficiency of this
  • process is primarily the oxygen evolution reaction (OER) due to its sluggish kinetics resulting in a high overpotential and low efficiency [4]. To overcome this problem, robust anode electrode catalyst materials are required. Since the Ru- and Pt-based catalysts used so far for OER are made using limited
  • (η: 320 mV, Eonset: 1.52 V), but the overall activity of the CoNiFe-GO was lowered compared to CoNiFe alone (η: 224 mV, Eonset: 1.41 V). The catalytic efficiency towards the OER can be also assessed by analyzing the Tafel plots of the catalysts (Figure 5c). The Tafel slope for bare nickel foam was
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • , a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie
  • the dielectric surrounding the plasmonic nanoparticle, apart from the permittivity of the nanoparticle itself. The shift in resonance on incorporation of the nanoparticle into a dielectric will decide its absorbance and hence the efficiency of conversion of the resonance into heat. This has been
  • initial thermalization step) up to 1000 °C, the increase in nanoparticle temperature was found to be only 20 °C [84]. This implies by no means a weak efficiency of heat production due to plasmon relaxation, as high temperatures (230 °C for AgNPs for example) are possible, depending on the various factors
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • treatment, nanoparticles have an important place to overcome the physiological limitations and to improve therapeutic efficiency [8][9]. Chitosan is a natural polysaccharide biopolymer of different molecular weights bearing amino and hydroxy functional groups [10]. It is the main component of shellfish such
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • Need for Multimodal Characterization of Nanoparticles The methods chosen to investigate NP uptake and transfection can be biased towards particular properties and may provide limited insights into the efficiency of NP internalization and efficacy. Typically, cellular uptake and transfection efficiency
  • Mechanism Currently, extensive research is focused on the improvement of NP carrier design and gene delivery efficiency [23][24][25][26]. Recent debates within the gene delivery field have highlighted the need for an improved understanding about what cellular/subcellular features underscore the success of
  • taken to prevent artifacts [49]. New biological tools, such as SNAP-tag, could be used to label intracellular proteins with high efficiency and low fluorescence background, which would be promising for future co-localization studies investigating NP-mediated endocytic routes [50][51]. The combination of
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • targeting Renilla luciferase mRNA. Gene inhibition showed an optimum efficiency (40%) at a given nanoparticle/antisense oligonucleotide ratio, which is promising for in vitro cell transfection. When water was replaced with PBS (0.16 M) for the PIC preparation of nanoemulsions starting from
  • were obtained upon solvent removal. High colloidal stability (longer than three months without sedimentation), high encapsulation efficiency (>99%), slow drug release (only 15% of the drug after five days), and low cytotoxicity against HeLa cells (cell viability > 80%) were observed. In vivo tests
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • vascular endothelial dysfunction include physiological processes (e.g., aging) or environmental factors such as a high-fat diet. These conditions are accompanied by an increased generation of reactive oxygen species (ROS), which, combined with impaired efficiency of antioxidant systems are one of the most
PDF
Album
Review
Published 08 Mar 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • all GMs are infinite since we ignore the material absorption in the lossless dielectrics. When the period-doubling perturbation is applied and the new QGMs are formed because of the folding of the FBZ, the coupling efficiency between free-space radiation and the QGMs is still very low, leading to the
PDF
Album
Full Research Paper
Published 06 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • mechanical stability against photocorrosion; (c) high efficiency in quantum conversion; (d) fast generation and efficient transfer of photocarriers (e− and h+); and (e) slow recombination rate of photogenerated charge carriers. The nanopowder photocatalysts must also exhibit easy and rapid recovery from the
  • solution with adequate reusability, that is, without noticeable loss of efficiency. Several strategies are currently used to achieve the listed features, including tuning of size, morphology, and particle dimensions. Also, the composition of the photocatalyst is varied yielding core–shell structures
  • : Heterojunctions, which are the interfaces between two different semiconductors, increase the charge carrier separation efficiency with increased kinetics and strong redox ability. This enhances the photocatalytic capabilities of photocatalysts [101][119][156][157][158][159][160][161]. Depending on how the
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • achieve ordered nanostructures [9][10][11][12][13][14]. Although these methods can increase the efficiency of the self-assembly, they can also complicate the fabrication process further, sometimes even more than the top-down approaches. Therefore, there is still a need for simple methods to synthesize
  • the particles through a capping agent-like effect. (3) The SiBP can increase the efficiency of the self-assembly by modifying the net surface charge of the particle. To test these hypotheses, we have synthesized SiO2 particles with the Stöber method using the SiBP as the only catalyst or in
  • scattering (DLS). The efficiency of the self-assembly was evaluated with scanning electron microscopy (SEM), UV–vis spectroscopy, and qualitative visual demonstration. Results and Discussion SiBP alone as catalyst Reaction kinetics were studied via OD measurements of the particles and GC analysis of
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising
  • disciplines, such as nanomaterials science, mechanical engineering, pharmacology, and clinical medicine. Nanoparticle (NP)-based therapeutics are uniquely able to improve drug loading efficiency, control drug release, and protect drug molecules against undesired degradation [1][2]. NPs are widely used in
  • of safety and efficiency. However, there are still many inadequacies that limit the application of nanoformulations in biomedicine, including limited tumor penetration and insufficient specificity. Furthermore, nanoformulations are often recognized as foreign materials by the reticuloendothelial
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • charges of high density can damage the membranes and organelles of normal cells. With the use of CyD-based DDSs, however, high transfection efficiency and low cytotoxicity have been accomplished with minimal immune stimulation. The preorganized three-dimensional molecular structure of CyD as well as the
  • efficiency of ROS production is reduced through self-quenching. In order to solve this problem, CyDs are very useful. In Figure 7A, two permethylated β-CyD molecules were connected by a linker to form a β-CyD dimer (CD2), whereas a porphyrin was conjugated with two adamantine molecules (TPP-Ad2) [74]. From
  • hindrance between the β-CyD units. Accordingly, 1O2 was efficiently generated by irradiation with 660 nm light since self-quenching of the photosensitizers was minimized. By using a photochromic switch moiety (two CyDs bridged with diarylethene), the efficiency of PDT was photo-regulated [75]. In order to
PDF
Album
Review
Published 09 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • Organisation, Sector-30C, Chandigarh-160030, India 10.3762/bjnano.14.20 Abstract The photothermal conversion efficiency of gold different nanoparticles (GNPs) in different concentrations (1.25–20 µg/mL) and at different irradiation intensities of near-infrared (NIR) broadband and NIR laser irradiation is
  • evaluated. Results show that for a concentration of 20.0 µg/mL, 40 nm gold nanospheres, 25 × 47 nm gold nanorods (GNRs), and 10 × 41 nm GNRs show a 4–110% higher photothermal conversion efficiency under NIR broadband irradiation than under NIR laser irradiation. Broadband irradiation seems suitable to
  • attain higher efficiencies for the nanoparticles whose absorption wavelength is different from the irradiation wavelength. Lower concentrations (1.25–5 µg/mL) of such nanoparticles show 2–3 times higher efficiency under NIR broadband irradiation. For GNRs of sizes 10 × 38 nm and 10 × 41 nm, the different
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • electrode. The oxygen reduction efficiency of both commercial catalysts is similar (Figure 5a, Table 2), but the catalyst HiSpec 3000 has a small advantage due to the lower percentage of hydrogen peroxide in the oxygen reduction products (Figure 5d). The fabricated catalysts of series A, B, C, and D also
  • . The durability of fabricated catalysts in RRDE tests is, after all, proportional to the amount of deposited platinum. Efficiency of manufactured catalysts in a fuel cell system Fabricated materials A, B, C, and D were used to make electrodes to investigate the efficiency of the fabricated Pt-based
  • , and the current increase when the water leaves the cell. Considering the polarization curves and the maximum power density of the cells (Table 2, Figure 7), material B shows the highest efficiency in the cell, while material A is slightly behind it. The open-circuit voltage of the cell, corresponding
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • explains the origin of the low radiative power efficiency. Finally, I discuss the design of an optimized Josephson patch oscillator capable of reaching high efficiency and radiation power for emission into free space. Keywords: antenna theory; cavity modes; Josephson effect; terahertz radiation
  • , developed by Koshelets and co-workers show a remarkable performance in terms of tunability and linewidth [6][9][12]. However, they emit very little power into free space [11][13][15][16]. The low radiation power efficiency, that is, the ratio of radiated to dissipated power, is commonly attributed to a
  • , and power efficiency. The model explains the origin of the low power efficiency for emission in free space and clarifies which parameters can be changed to improve the FFO characteristics. Finally, I discuss the design of a Josephson patch oscillator that can reach high power for emission in free
PDF
Album
Full Research Paper
Published 26 Jan 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • . It was found that, when the applied voltage was 40 kV (Figure 2e), less jet formation and low spinning efficiency were achieved. When the voltage was 60 kV (Figure 2f), more but unstable jets were formed due to too high electric field intensity, which would result in coarser fibers and fiber bundles
PDF
Album
Full Research Paper
Published 23 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • efficiency compared to that of Au, Ag nanoparticles (NPs) are prone to oxidation. Moreover, they are less thermodynamically stable leading to morphology variation and ultimately to deterioration of their SERS efficiency [13][14]. Besides that, most studies report on the high SERS properties for NPs in
  • Influence of the initial Ag content and dealloying time The nanoporous structure was tailored to obtain the best SERS efficiency for the detection of rhodamine B (RhB). First, the influence of the dealloying time on the morphology was evaluated. Samples with 30 atom % of Ag were synthesized and the
  • samples dealloyed for 60 min in HCl and that for three selected Ag compositions is reported in Table 1. The sample showing the best SERS efficiency (i.e., AlAg30) is also the one with the highest concentration of Ag (54 atom %) and the lowest carbon concentration (9.1 atom %) on the surface. Besides the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • , which is now showing slowing-down and failure signs [2]. It is evident that a radical reduction in energy consumption through efficiency improvement is needed and has become one of the main goals in the development of new supercomputers. For example, the powerful modern supercomputer TIANHE-2, a massive
PDF
Editorial
Published 10 Jan 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • -layer-to-bulk mass ratio, and 1D/2D/3D shape characteristics also varied. Table 3 gives a summary of the efficiency of each medium in producing flakes with the listed size and shape features. Our procedure puts to use previously published flake analysis methodology, highlighting the importance of
PDF
Album
Full Research Paper
Published 09 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • [17]. This beetle has hydrophilic spots on its back, which transform vapor into liquid water. For the collection to be efficient, below the hydrophilic spots, its wings are hydrophobic, and the captured water moves from hydrophilic to hydrophobic parts driven by gravity. The efficiency of this process
PDF
Album
Full Research Paper
Published 02 Jan 2023
Other Beilstein-Institut Open Science Activities