Search results

Search for "FEBIP" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • ; FEBIP; side wall angle; Introduction Focused electron beam-induced processing (FEBIP) is a technique in which a focused electron beam is directed onto a substrate with an adsorbed layer of precursor molecules. The precursor molecules are supplied from a gas injection system through a nozzle at close
  • which the sidewall angle becomes 90°. The method described here to make vertical sidewalls of FEBID deposits has the potential to make FEBIP a more competitive technology for lithography applications. Experimental The FEBID and FEBIE experiments were carried out in a Thermo Fisher Scientific Helios 650
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • agent need to be considered and further studied. Keywords: 2D materials; carbon nanomembranes (CNMs); focused electron beam-induced processing; metallic nanostructures; self-assembled monolayers; Introduction Focused electron beam-induced processing (FEBIP) is a powerful maskless “direct-write
  • ” approach for the fabrication of arbitrarily shaped nanostructures [1][2][3][4][5]. The most prominent method within the FEBIP family is electron beam-induced deposition (EBID). In EBID, a focused electron beam is used to locally dissociate adsorbed precursor molecules. Thus, a localized deposit of the non
  • , to the dissociation of the precursor molecules on top of the initial EBID deposit. In the case of Fe(CO)5 this AG process results in the formation of deposits consisting of pure iron [10]. A second method from the FEBIP family, namely electron beam-induced surface activation (EBISA), also largely
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • second technology, focused electron induced processing (FEBIP), uses a nozzle-dispensed precursor gas either to etch or to deposit patterns on the nanometre scale without the need for resist. The process has potential for high throughput enhancement using multiple electron beams and a system employing up
  • and is capable of sub-10 nm patterning using either developable resists or a self-developing mode applicable for many polymeric resists, which is preferred. Like FEBIP it is potentially capable of massive parallelization for applications requiring high throughput. Keywords: charged particle beams
  • in Figure 10. EBID is a technique with a potentially higher spatial resolution than conventional resist-based EBL. The next section briefly reviews EBID and its counterpart electron beam induced etching (EBIE). The generic term for both techniques is focused electron beam induced processing (FEBIP
PDF
Album
Review
Published 14 Nov 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • -Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany, Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, The Netherlands 10.3762/bjnano.9.124 Keywords: electron-induced chemistry, FEBID; FEBIP; nanofabrication; nanolithography; Electron
  • -induced chemistry of volatile precursor molecules is central to a novel class of gas-assisted nanolithographic techniques, subsumed as focused electron beam induced processing (FEBIP) [1][2]. FEBIP has emerged with the availability of extremely narrow focused electron beams in electron microscopy. These
  • beams can be used to induce, on a very small area, chemical reactions of adsorbed precursor molecules that either lead to etching of the underlying surface or deposition of material. The latter additive variant of FEBIP is focused electron beam induced deposition (FEBID), a powerful direct-write
PDF
Editorial
Published 30 Apr 2018

The rational design of a Au(I) precursor for focused electron beam induced deposition

  • Ali Marashdeh,
  • Thiadrik Tiesma,
  • Niels J. C. van Velzen,
  • Sjoerd Harder,
  • Remco W. A. Havenith,
  • Jeff T. M. De Hosson and
  • Willem F. van Dorp

Beilstein J. Nanotechnol. 2017, 8, 2753–2765, doi:10.3762/bjnano.8.274

Graphical Abstract
  • , University of Ghent, B-9000 Ghent, Belgium Uniresearch B.V., 2628 XG Delft, Netherlands 10.3762/bjnano.8.274 Abstract Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The
  • unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au–Au
  • processing (FEBIP) [1][2][3]. In the case of writing a precursor provides the ink, in the case of etching a precursor enables the removal of sample material. The precursors are usually gaseous, although they can also be liquid [4][5]. In the case of gaseous precursors, the gas is delivered to the sample
PDF
Album
Full Research Paper
Published 20 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • metallic templates for the localized growth of CNTs. However, all of these methods are lacking in either the final desired resolution or in flexibility of the targeted shapes. Therefore, we explore focused electron beam induced processing (FEBIP)-based techniques for the controlled and localized
  • fabrication of catalytically active deposits for the subsequent growth of corresponding CNTs with precise positioning. In FEBIP the focused electron beam of an electron microscope, here a scanning electron microscope (SEM), is used to very locally modify adsorbed precursor molecules or the substrate itself
  • . In the present work, we used the so-called electron beam induced deposition (EBID) method as the FEBIP technique in which adsorbed precursor molecules are locally dissociated by the impact of the electron beam and leave a deposit of the nonvolatile dissociation products [16][17][18]. In this regard
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Dissociative electron attachment to coordination complexes of chromium: chromium(0) hexacarbonyl and benzene-chromium(0) tricarbonyl

  • Janina Kopyra,
  • Paulina Maciejewska and
  • Jelena Maljković

Beilstein J. Nanotechnol. 2017, 8, 2257–2263, doi:10.3762/bjnano.8.225

Graphical Abstract
  • ]. There is, however, still a need to find more efficient FEBIP precursors that will readily detach ligands upon interaction with electrons. According to the current understanding, precursors with large organic ligands are particularly unfavorable for FEBID because they lead to codeposition of large
PDF
Full Research Paper
Published 30 Oct 2017

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • fragments. Thus, one would expect that that the relative importance of these processes in FEBIP will not only define the initial step in the deposition process, but may also strongly influence further surface, thermal, or electron-induced chemical transformation of the deposit. 3 Gas phase vs surface
PDF
Album
Review
Published 16 Sep 2015

Continuum models of focused electron beam induced processing

  • Milos Toth,
  • Charlene Lobo,
  • Vinzenz Friedli,
  • Aleksandra Szkudlarek and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1518–1540, doi:10.3762/bjnano.6.157

Graphical Abstract
  • of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland 10.3762/bjnano.6.157 Abstract Focused electron beam induced processing (FEBIP) is a
  • suite of direct-write, high resolution techniques that enable fabrication and editing of nanostructured materials inside scanning electron microscopes and other focused electron beam (FEB) systems. Here we detail continuum techniques that are used to model FEBIP, and release software that can be used to
  • simulate a wide range of processes reported in the FEBIP literature. These include: (i) etching and deposition performed using precursors that interact with a surface through physisorption and activated chemisorption, (ii) gas mixtures used to perform simultaneous focused electron beam induced etching and
PDF
Album
Review
Published 14 Jul 2015

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • deposition; nanofabrication; scanning transmission X-ray microscopy; Introduction The fabrication of nanostructures by using focused electron-beam induced processing (FEBIP) techniques, especially electron-beam induced deposition (EBID), has progressed considerably over the last decade [1][2][3][4][5]. In
  • sizes [13], the possibility of 3D fabrication, e.g., pillars, and rapid prototyping capabilities [14]. A related FEBIP approach is electron-beam induced surface activation (EBISA) [7]. In EBISA, a suitable substrate, e.g., SiOx [7][15][16][17][18], TiO2 [19], or a thin porphyrin film on Ag(111) [8], is
  • (CO)8 [15] makes that precursor an obvious candidate for the fabrication of layered Co/Fe nanostructures with arbitrary shapes. Thus, the presented results considerably expand the possibilities of FEBIP-based nanofabrication techniques. We also show that the potential for (auto-)catalytic
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

The role of electron-stimulated desorption in focused electron beam induced deposition

  • Willem F. van Dorp,
  • Thomas W. Hansen,
  • Jakob B. Wagner and
  • Jeff T. M. De Hosson

Beilstein J. Nanotechnol. 2013, 4, 474–480, doi:10.3762/bjnano.4.56

Graphical Abstract
  • , Denmark 10.3762/bjnano.4.56 Abstract We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor
  • between estimates for Edes from FEBIP experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that
  • are affected by the electron irradiation, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for
PDF
Album
Full Research Paper
Published 14 Aug 2013

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • beam induced processing (FEBIP), the most comprehensive of which is the excellent article by Utke, Hoffmann and Melngailis [6]. These reviews mainly cover the principles of gas-assisted deposition and etching with electrons, provide a summary of modeling approaches to FEBIP, and give some details of
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities