Search results

Search for "Kelvin probe force microscopy (KPFM)" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • 10.3762/bjnano.9.119 Abstract Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved
  • deflection detection system. Finally, guidelines for avoiding such artifacts are given. Keywords: Kelvin probe force microscopy; time-resolved; Introduction Kelvin probe force microscopy (KPFM) [1] has been widely used for the characterization of metals, insulators, and semiconducting materials on the
PDF
Album
Full Research Paper
Published 24 Apr 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • recorded by Kelvin probe force microscopy (KPFM) [68]. The CPD arises from the work function difference between the tip and the substrate and is altered by surface charges or dipoles. The voltage needed to compensate for the electrostatic forces due to this potential difference is measured in KPFM. The CPD
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • of PSCs [15], thus providing insights into the operating mechanism of PSCs. Among all the available modes of AFM, conductive AFM (C-AFM) and Kelvin probe force microscopy (KPFM) are the most widely used for PSC research, since the measured current and electrical potential can reveal local charge
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • results, the next step should be aimed on monitoring the influence of the oxygen vacancies density on the averaged level alignment between a semiconducting substrate and a full organic layer. Another method used to understand the molecule-substrate interactions is Kelvin probe force microscopy (KPFM
PDF
Album
Commentary
Published 09 Nov 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are
  • elementary building block level. Keywords: donor–acceptor co-oligomers; donor–acceptor lamellae; donor–acceptor-ordered bulk heterojunction; Kelvin probe force microscopy (KPFM); noncontact atomic force microscopy (nc-AFM); organic photovoltaics; surface photo-voltage (SPV); Introduction Nowadays, with
  • ) materials, arranged in interpenetrated networks at the 10 nm scale to efficiently separate the excitons into free charges at the D–A interface. In the past decade, several studies demonstrated that Kelvin probe force microscopy (KPFM) can be powerfully combined with atomic force microscopy (AFM) to
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM
  • materials), separated (e.g., electrostatic forces from magnetic forces), or be dynamically compensated (e.g., by tuning the bias voltage in Kelvin probe force microscopy (KPFM)) and measured together with the topological information. For all these properties various experimental approaches have been
PDF
Album
Full Research Paper
Published 28 Dec 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • [18], electrochemical [19] and ionic [15] functionality on the nanoscale have been developed. A paradigmatic example of such development is closed loop-Kelvin probe force microscopy (KPFM) [20], which has become a widely used voltage-modulated SPM technique for the measurement of surface potential
  • , Ireland Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 10.3762/bjnano.6.19 Abstract Conventional closed loop-Kelvin probe force microscopy
  • (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Highly NO2 sensitive caesium doped graphene oxide conductometric sensors

  • Carlo Piloto,
  • Marco Notarianni,
  • Mahnaz Shafiei,
  • Elena Taran,
  • Dilini Galpaya,
  • Cheng Yan and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 1073–1081, doi:10.3762/bjnano.5.120

Graphical Abstract
  • microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy and Kelvin probe force microscopy (KPFM). XPS data were acquired using a Kratos Axis ULTRA X-ray photoelectron spectrometer incorporating a 165 mm hemispherical electron energy analyser. The incident
PDF
Album
Full Research Paper
Published 17 Jul 2014

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • exception to this is the discussion that has surrounded Kelvin probe force microscopy (KPFM) where accurate modelling of this long-range regime is critical to interpreting results [8][9][10]. Nonetheless, long-range forces are readily subtracted in the literature using this method, often using simplistic
PDF
Album
Full Research Paper
Published 01 Apr 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • , e.g., lower the contact resistance and improve their performance. First experiments adressing this issue for MoS2 by using Kelvin probe force microscopy (KPFM) have already been reported [28][29]. However, these measurements were not done on SLM but bilayer MoS2 (BLM) and higher layer numbers and the
PDF
Album
Full Research Paper
Published 13 Mar 2014

Noncontact atomic force microscopy II

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2014, 5, 289–290, doi:10.3762/bjnano.5.31

Graphical Abstract
  • how new experimental methods that are based on the working principle of NC-AFM are continuously being developed, which is documented by a number of papers dealing with multi-frequency AFM as well as Kelvin probe force microscopy (KPFM). We thank all the scientists who have submitted their outstanding
PDF
Editorial
Published 12 Mar 2014

Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification

  • M. Temmen,
  • O. Ochedowski,
  • B. Kleine Bussmann,
  • M. Schleberger,
  • M. Reichling and
  • T. R. J. Bollmann

Beilstein J. Nanotechnol. 2013, 4, 625–631, doi:10.3762/bjnano.4.69

Graphical Abstract
  • Kelvin probe force microscopy (KPFM). SHI irradiation results in rupture of the SLG sheets, thereby creating foldings and bilayer graphene (BLG). Applying the other modification methods creates enlarged (twisted) graphene foldings that show rupture along preferential edges of zigzag and armchair type
  • ) measured by KPFM. Keywords: graphene; Kelvin probe force microscopy (KPFM), local contact potential difference (LCPD); non-contact atomic force microscopy (NC-AFM); SiC; Introduction Since its discovery in 2004 [1], graphene, the 2D crystal with a honeycomb lattice of sp2-bonded carbon atoms, has been
  • different BLG stackings, we investigate the topography by non-contact atomic force microscopy (NC-AFM) combined with measuring the local contact potential differences (LCPD) using Kelvin probe force microscopy (KPFM). Experimental Graphene is exfoliated from a HOPG crystal (Momentive Performance Materials
PDF
Album
Full Research Paper
Published 07 Oct 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far. Keywords: atomic force microscopy (AFM); dye-sensitized solar cells (DSC); Kelvin probe force microscopy (KPFM
  • select surface treatments that are beneficial for the DSC performance. In order to achieve a nanometer scale resolution, SPV spectroscopy can be combined with Kelvin probe force microscopy (KPFM) [30][31][32], an atomic force microscopy (AFM) technique that was introduced in 1991 [33]. KPFM is a surface
PDF
Album
Full Research Paper
Published 01 Jul 2013

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  • Fredy Mesa,
  • William Chamorro,
  • William Vallejo,
  • Robert Baier,
  • Thomas Dittrich,
  • Alexander Grimm,
  • Martha C. Lux-Steiner and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Graphical Abstract
  • from the chemical bath will be deposited. Surface characterization by Kelvin probe force microscopy (KPFM) In order to comparatively characterize the growth and electronic properties of the different buffers, we performed KPFM measurements on the Cu3BiS3 samples with all three buffer layers, and as a
  • with Al, deposited by dc magnetron sputtering [21]. For analysis by Kelvin probe force microscopy (KPFM) [7], surface photovoltage (SPV), and X-ray photoemission spectroscopy (XPS), sample contact was established at the Al back contact. CdS thin films were deposited onto the Cu3BiS3 layers from a
PDF
Album
Full Research Paper
Published 23 Mar 2012

An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001)

  • Antoine Hinaut,
  • Adeline Pujol,
  • Florian Chaumeton,
  • David Martrou,
  • André Gourdon and
  • Sébastien Gauthier

Beilstein J. Nanotechnol. 2012, 3, 221–229, doi:10.3762/bjnano.3.25

Graphical Abstract
  • designed molecule, consisting of a flat aromatic triphenylene core equipped with six flexible propyl chains ending with polar cyano groups, is investigated by using atomic force microscopy in the noncontact mode (NC-AFM) coupled to Kelvin probe force microscopy (KPFM) in ultrahigh vacuum at room
  • room for progress as shown by the impressive submolecular resolution that has been demonstrated in recent works on the adsorption of pentacene [14] or decastarphene [15] molecules on Cu(111) and on a NaCl(001) bilayer on Cu(111). During the same period, Kelvin probe force microscopy (KPFM) has been
PDF
Album
Full Research Paper
Published 12 Mar 2012

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • identification of the graphene layer thickness from the local contact potential as determined by means of Kelvin probe force microscopy (KPFM) [11][12]. As a further advantage, KPFM determines step heights more accurately than STM or AFM with constant bias [13] and is therefore employed in this study to
  • almost the same carbon density as one layer of graphene [16]. Experimental Noncontact atomic force microscopy (NC-AFM) measurements were performed in ultrahigh vacuum (UHV, p < 2·10−10 mbar) by means of a home-built microscope similar to the one described in [17]. Kelvin probe force microscopy (KPFM
PDF
Album
Full Research Paper
Published 29 Feb 2012

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

  • Miriam Jaafar,
  • Oscar Iglesias-Freire,
  • Luis Serrano-Ramón,
  • Manuel Ricardo Ibarra,
  • Jose Maria de Teresa and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2011, 2, 552–560, doi:10.3762/bjnano.2.59

Graphical Abstract
  • magnetic field during the MFM operation [14][15][16]; (ii) performing a combination of Kelvin probe force microscopy (KPFM) [17][18] and MFM to compensate the electrostatic contribution to the frequency shift signal. In the first method the evolution of the MFM signal with the magnetic field is a signature
  • ., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force
  • microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2011

The role of the cantilever in Kelvin probe force microscopy measurements

  • George Elias,
  • Thilo Glatzel,
  • Ernst Meyer,
  • Alex Schwarzman,
  • Amir Boag and
  • Yossi Rosenwaks

Beilstein J. Nanotechnol. 2011, 2, 252–260, doi:10.3762/bjnano.2.29

Graphical Abstract
  • cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the
  • calculated and found to be relatively small. Keywords: boundary elements method; cantilever; convolution; Kelvin probe force microscopy; point spread function; Introduction The effect of the measuring probe in electrostatic force based microscopies, such as Kelvin probe force microscopy (KPFM) [1], is very
PDF
Album
Full Research Paper
Published 18 May 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning
  • defects in oxide surfaces was studied by non-contact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM). Furthermore, the contact potential was determined by Kelvin probe force microscopy (KPFM). This technique has a high spatial resolution, thus avoiding averaging over various
PDF
Album
Review
Published 03 Jan 2011

Scanning probe microscopy and related methods

  • Ernst Meyer

Beilstein J. Nanotechnol. 2010, 1, 155–157, doi:10.3762/bjnano.1.18

Graphical Abstract
  • molecules on surfaces. AFM has evolved considerably in the last few years, where new operation modes, such as non-contact force microscopy (nc-AFM), Kelvin probe force microscopy (KPFM) or friction force microscopy (FFM), were developed. One main focus is the high resolution capabilities of nc-AFM, which
PDF
Album
Editorial
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities