Search results

Search for "MEMS" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Thermo-voltage measurements of atomic contacts at low temperature

  • Ayelet Ofarim,
  • Bastian Kopp,
  • Thomas Möller,
  • León Martin,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 767–775, doi:10.3762/bjnano.7.68

Graphical Abstract
  • gold structure was placed on a Kapton Cirlex substrate (properties from COMSOL Material Library: Polyimide tape (Kapton HN)) with an additional polyimide layer (properties from COMSOL MEMS module: Polyimide) of 2.5 µm thickness. A Gaussian heat source with 1.5 mW and a diameter of 12 µm (FWHM) was
PDF
Album
Full Research Paper
Published 30 May 2016

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • dislocation-driven grain rotation can still be attributed to dislocation formation, propagation and adsorption [13][22]. The understanding of the active deformation mechanisms is essential to support the application of NC metals, for example, in microelectrical mechanical systems (MEMS) [23], hydrogen storage
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

Contact-free experimental determination of the static flexural spring constant of cantilever sensors using a microfluidic force tool

  • John D. Parkin and
  • Georg Hähner

Beilstein J. Nanotechnol. 2016, 7, 492–500, doi:10.3762/bjnano.7.43

Graphical Abstract
  • John D. Parkin Georg Hahner EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK 10.3762/bjnano.7.43 Abstract Micro- and nanocantilevers are employed in atomic force microscopy (AFM) and in micro- and nanoelectromechanical systems (MEMS and NEMS) as
  • addition, so-called force curves can reveal information about the interaction between the AFM tip and the surface, thus providing information about local interactions [4]. Cantilever structures also form an integral part of micro- and nanoelectromechanical systems (MEMS and NEMS) [5][6][7] and can be
PDF
Album
Supp Info
Full Research Paper
Published 30 Mar 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be
  • numerous integrated sensing approaches. These include capacitive [13], piezoresistive [14], piezoelectric [15] and magnetoresistive [16] sensing. A common drawback of self-sensing approaches applied to microelectromechanical systems (MEMS) is the fact that drive and sense electrodes share a common node
  • (the MEMS electrical network) resulting in a potentially large feedthrough path from actuation to sensing [17]. If not properly accounted for, this feedthrough can almost entirely conceal the signal originating from the motion of the structure and is especially dominant if the same transduction
PDF
Album
Full Research Paper
Published 24 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • -mechanical systems (MEMS/NEMS) have been realized and widely used. As a significant branch of MEMS/NEMS, micro/nanofluidic systems incorporating micro/nano pumps, valves, mixers, and channels have wide applications, such as micro heat exchangers, drug delivery systems, and lab-on-a-chip bioanalysis [1][2
PDF
Album
Full Research Paper
Published 24 Nov 2015

Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

  • Alexander Samardak,
  • Margarita Anisimova,
  • Aleksei Samardak and
  • Alexey Ognev

Beilstein J. Nanotechnol. 2015, 6, 976–986, doi:10.3762/bjnano.6.101

Graphical Abstract
  • fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices. Keywords: electron-beam
  • them very attractive for the fabrication of hard nanoimprint lithography molds and etching masks, as well as for nanoelectronic and nanophotonic applications, MEMS and NEMS devices. Experimental Sample preparation All the preparation procedures were conducted in a class 10,000 clean room. The PMMA A2
PDF
Album
Full Research Paper
Published 17 Apr 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • ]. Therefore, we used such magnetic tunneling junctions with magnetostrictive electrodes deposited and patterned on Si substrates as strain sensor on AFM cantilevers. The Si substrates were structured into AFM cantilevers by means of microelectromechanical systems (MEMS) technology [35]. The magnetic tunneling
  • prepared by a sequence of MEMS techniques including photolithography, reactive ion etching (RIE), ion beam etching (IBE) and wet etching. The cantilevers used in this study were 300 to 350 μm long and 40 μm wide. To ease the fabrication process thicknesses ranging from 10 μm to 20 μm were chosen. The
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • as integrated circuits and the fabrication of micro-electromechanical systems (MEMS), this technique has been improved and developed in the course of the years, with respect to both etching/polimerizating chemical agents and process temperature and step time [106]. Silicon pillars smaller than 100 nm
PDF
Album
Review
Published 14 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • slip; electrowetting; nanobubbles; surface charge; Introduction The interface of solid and liquid plays an important role in liquid flow in various fluidics based micro/nano-electro-mechanical systems (MEMS/NEMS), which have a large surface area to volume ratio [1][2]. At the interface of solid and
PDF
Album
Review
Published 15 Jul 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • snap to contact, the force gradient must be smaller than the cantilever stiffness And hence Equation 46 reduces to For comparison, a widely used merit factor for MEMS resonators is and the one of minimum force detection is This result, i.e., the maximization of f0Q/k0.69 is positioned between the usual
  • MEMS benchmark f0Q and a merit factor f0Q/k found by Albrecht [3] for the minimum detectable force by noncontact AFM. If the noise PSD is dominated by detector noise, Equation 40, then we obtain a merit factor MS instead of Equation 45: similarly as above, D0 is a fraction of z and hence Using Equation
PDF
Album
Full Research Paper
Published 02 Jan 2014

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • fiber are restricted at nodes, successfully describes the observed characteristics. We expect that the applications of the general methodology used in this paper could also be extended to characterization of cytoskeletal protein networks and microelectromechanical (MEMS) devices where suspended
PDF
Album
Full Research Paper
Published 05 Apr 2013

Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

  • Christian Obermair,
  • Marina Kress,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 824–830, doi:10.3762/bjnano.3.92

Graphical Abstract
  • successfully demonstrated on the nanometer scale. Keywords: atomic force microscopy; electrochemical deposition; electrochemistry; nanoelectronics; nanofabrication; nanolithography; nanotechnology; MEMS and NEMS; reversible processes; scanning probe microscopy and lithography; Introduction The
  • understand and control electrochemical deposition processes on the nanometer scale. This also applies to the field of micro- and nano-electromechanical systems (MEMS and NEMS). At the same time, much progress was achieved in recent years in understanding the mechanisms and developing new methods for the
PDF
Album
Full Research Paper
Published 05 Dec 2012

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • nanoscale with AFM as well as on the macroscale by using a ball-on-flat tribometer to relate friction and wear reduction on the nanoscale and macroscale. Results indicate that the addition of Au nanoparticles reduces friction and wear. Keywords: AFM; drug delivery; friction; gold nanoparticles; MEMS/NEMS
  • ; nanomanipulation; Introduction Nano-objects are continually studied in tribological applications and increasingly in other applications that require controlled manipulation and targeting in liquid environments. The need for suitable forms of lubrication for micro/nanoelectromechanical systems (MEMS/NEMS) and the
  • to the commercialization of MEMS/NEMS [1]. As one moves from the macroscale to the micro/nanoscale, surface to volume ratio increases. Therefore, adhesive and friction forces, which are dependent on surface area, become more significant. With MEMS/NEMS devices, the initial start-up forces and torques
PDF
Album
Full Research Paper
Published 15 Nov 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
PDF
Album
Review
Published 20 Dec 2011

The atomic force microscope as a mechano–electrochemical pen

  • Christian Obermair,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 659–664, doi:10.3762/bjnano.2.70

Graphical Abstract
  • microscopy; deposition; electrochemistry; nanoelectronics; nanofabrication; nanolithography; nanotechnology; NEMS and MEMS; scanning probe lithography; Introduction The controlled, patterned, electrochemical deposition of metals at predefined positions on the nanometer scale is of great interest for
PDF
Album
Full Research Paper
Published 04 Oct 2011

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • (including distance) of the object and the direction of object motion [15]. The sensory hairs of crustaceans, insects and spiders and the lateral line system of fish have inspired engineers to develop artificial air [16] and water flow sensors [17][18][19] based on microelectromechanical system (MEMS
  • the optical ANs using MEMS technology. This is currently being done in cooperation with the center for advanced studies (caesar) in Bonn. Smaller sensors will allow us to build smaller canal systems and thus to miniaturize the sensor platforms. Finally, the development of ALLs will facilitate
PDF
Album
Full Research Paper
Published 06 Jun 2011

Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

  • Bert Stegemann,
  • Matthias Klemm,
  • Siegfried Horn and
  • Mathias Woydt

Beilstein J. Nanotechnol. 2011, 2, 59–65, doi:10.3762/bjnano.2.8

Graphical Abstract
  • and micro-electro-mechanical systems (MEMS). In this context, a great technological challenge in advancing miniaturization is to overcome the strong adhesive attractions between nanoscopic tribo-elements in order to realize technical systems with low friction [12][13]. The atomic force microscope (AFM
PDF
Album
Full Research Paper
Published 27 Jan 2011

The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

  • W. Merlijn van Spengen,
  • Viviane Turq and
  • Joost W. M. Frenken

Beilstein J. Nanotechnol. 2010, 1, 163–171, doi:10.3762/bjnano.1.20

Graphical Abstract
  • systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the
  • sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and
  • frequency. The results obtained agree very well with measurement data reported previously. Keywords: MEMS; microscale friction reduction; normal force modulation; stochastic Prandtl–Tomlinson model; surface roughness; Introduction With the invention of the friction force microscope (FFM) by Mate et al. [1
PDF
Album
Full Research Paper
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities