Search results

Search for "amorphous carbon" in Full Text gives 110 result(s) in Beilstein Journal of Nanotechnology.

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • , indicating that the nanocomposite is free from any absorbed solvent or moisture. The major mass loss of around 80% occurred from 400 to 525 °C, and is due to the decomposition of the polymer matrix. The residual mass of 20% is comprised of both the MWCNTs and the amorphous carbon, which obviously comes from
PDF
Album
Full Research Paper
Published 27 Sep 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • growth is initiated with a buffer layer consisting of amorphous carbon and carbon onion structures, nanographitic (NG) island formation, or through carbide formation. The factors responsible for the vertical growth are stress relaxation through NG islands, inherent electric field and thermophoretic force
  • the plasma is high and plasma-generated carbon species attach to the reactive edges of the vertical sheets through chemisorption and diffusion, thus promoting the growth of crystalline sheets. In contrast, hydrogen species, mostly radicals, chemically etch the small flakes and amorphous carbon, which
PDF
Album
Full Research Paper
Published 10 Aug 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • located around the particle into amorphous carbon. The amorphous carbon immobilizes the particle on the substrate. Finally, the unfixed nanoparticles are removed. However, in this original technique, the area in which the nanoparticles were fixed was wider than the electron-probe size of a few nanometers
  • gold nanoparticles are fixed on the substrate by electron beam irradiation. Finally, the unfixed nanoparticles are removed. In the second step, the organic molecules (e.g. citrate) surrounding the nanoparticles are decomposed to amorphous carbon, and this amorphous carbon existing in the gap between
PDF
Album
Full Research Paper
Published 26 Jul 2017

Characterization of ferrite nanoparticles for preparation of biocomposites

  • Urszula Klekotka,
  • Magdalena Rogowska,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2017, 8, 1257–1265, doi:10.3762/bjnano.8.127

Graphical Abstract
  • grid covered with an amorphous carbon film to provide good support for the particles. Energy dispersive X-ray spectra (EDX) were collected during the TEM measurements. The analysis of the crystal structure was done by X-ray diffraction (XRD) on an Agilent Technologies SuperNova diffractometer with a Mo
PDF
Album
Full Research Paper
Published 13 Jun 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • resemble that of amorphous carbon [68]. Following the laser treatment, the characteristic π* and σ* peaks have sharper spectral features, indicating that the carbon has been transformed from amorphous to graphitic. The laser treatment thus induces C phase transformation from amorphous to graphite, which is
  • conditions. For reference, bulk platinum has a resistivity on the order of 11 µΩ·cm. As shown in Figure 3a deposits grown using the MeCpPt(IV)Me3 precursor have a microstructure that consists of nanocrystalline platinum grains embedded in an amorphous carbon matrix which is consistent with many previous
  • the resultant calculated resistivity versus electron beam dwell time for various EBID conditions. Purification of the nanobridges can be qualitatively indicated by their resistivity. Lower resistivity corresponds to a higher platinum concentration as well as graphitization of the amorphous carbon
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • molecules, these will decompose during the ion beam irradiation or exposure to secondary electrons and will deposit as amorphous carbon on the graphene surface competing with the sputtering process. This will result in an incorrect determination of dwell time and false beam profile curves. The second
PDF
Album
Full Research Paper
Published 23 Mar 2017

Liquid permeation and chemical stability of anodic alumina membranes

  • Dmitrii I. Petukhov,
  • Dmitrii A. Buldakov,
  • Alexey A. Tishkin,
  • Alexey V. Lukashin and
  • Andrei A. Eliseev

Beilstein J. Nanotechnol. 2017, 8, 561–570, doi:10.3762/bjnano.8.60

Graphical Abstract
  • error limits; however, slightly better stability of carbon-coated membranes was noticed. Therefore, both the thermal treatment procedure and the CVD coating of the membrane with an amorphous carbon results in the stabilization of AAO membranes towards dissolution in water. This therefore allows for
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2017

Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

  • Giacomo Biagiotti,
  • Vittoria Langè,
  • Cristina Ligi,
  • Stefano Caporali,
  • Maurizio Muniz-Miranda,
  • Anna Flis,
  • K. Michał Pietrusiewicz,
  • Giacomo Ghini,
  • Alberto Brandi and
  • Stefano Cicchi

Beilstein J. Nanotechnol. 2017, 8, 485–493, doi:10.3762/bjnano.8.52

Graphical Abstract
  • , compound 8 and 9 (see Figure 3). Generally, CNMs show two main bands in their Raman spectra: one at ≈1580 cm−1 (G band) related to sp2 graphitic domain and the second at ≈1360 cm−1 (D band) attributed to the amorphous carbon or deformation vibrations of a hexagonal ring [15]. Raman spectra of ox-MWCNTs 4
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2017

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • . A large variety of carbon materials have been investigated by XPS. In particular, XPS reveals important bonding information about carbons with nanoscale units such as carbon nanotubes [31], diamond-like carbon films [32], nanostructured carbon films [33], tetrahedral amorphous carbon films [34
  • ], amorphous carbon [35], nanoporous carbon [36], activated carbon [37], or carbon black [38]. In addition, XPS is important for the analysis of chemical structure [39], in particular, for the investigation of the sp2/sp3 hybridization ratio [35]. Results Density We determined the density of the foam by
  • carbon (1.8–2.1 g·cm−3), carbon nanotubes (1.6 g cm−3) or diamond (3.515 g·cm−3) [40]. Various types of low-weight carbons have been reported in the literature, with densities typically between 100 and 300 mg·cm−3. Among these are carbon aerogels [41][42][43], amorphous carbon nanoparticles [44][45
PDF
Album
Full Research Paper
Published 27 Dec 2016

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • .7.187 Abstract Nanocomposites of Li1.4Ni0.5Mn0.5O2+x and amorphous carbon were obtained by the pyrolysis of linear and cross-linked poly(vinyl alcohol) (PVA) in presence of Li1.4Ni0.5Mn0.5O2+x. In the case of linear PVA, the formation of nanostructured carbon coatings on Li1.4Ni0.5Mn0.5O2+x particles is
  • carbon coatings can be clearly observed on the particle surface as well as amorphous carbon bottlenecks between particles forming a consolidated 3D network (Figure 1B). Concerning the LNM/C composites obtained from cross-linked PVA, the continuous carbonaceous coatings on oxide particles are absent. The
  • PVA, the polymer pyrolysis tentatively occurs without preliminary melting. The pyrolysis of PVA particles allocated in the voids between LNM crystallites results in forming mesoporous particulates of amorphous carbon in the interparticular space. Another difference between the pyrolysis products of
PDF
Album
Full Research Paper
Published 09 Dec 2016

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • temperature (up to 200 °C) causes the formation of polymerized species forming amorphous carbon dots with partial sp2 hybridization. Song et al. demonstrated [39] that the primary fluorophore of a carbon dot is an independent fluorescent molecule, or possibly a molecule linked to the surface or incorporated
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study

  • Veronique Dupuis,
  • Anthony Robert,
  • Arnaud Hillion,
  • Ghassan Khadra,
  • Nils Blanc,
  • Damien Le Roy,
  • Florent Tournus,
  • Clement Albin,
  • Olivier Boisron and
  • Alexandre Tamion

Beilstein J. Nanotechnol. 2016, 7, 1850–1860, doi:10.3762/bjnano.7.177

Graphical Abstract
  • construction [12], we have been able to systematically show that our clusters are nanocrystallized and well-faceted (Figure 2). In order to avoid magnetic interactions among the NPs, the samples are prepared with a cluster concentration of less than 1 vol %. Notice that the amorphous carbon matrix is chosen to
PDF
Album
Full Research Paper
Published 28 Nov 2016

In situ formation of reduced graphene oxide structures in ceria by combined sol–gel and solvothermal processing

  • Jingxia Yang,
  • Johannes Ofner,
  • Bernhard Lendl and
  • Ulrich Schubert

Beilstein J. Nanotechnol. 2016, 7, 1815–1821, doi:10.3762/bjnano.7.174

Graphical Abstract
  • attributed to the D- (1388 cm−1) and the G- (1577 cm−1) band of graphene (Figure 1f). As amorphous carbon shows no D-band [22][23], the organic residues have a graphene-like structure, indicating graphene-like structures in the organic residue. Furthermore, the F2g band of CeO2 was also observed at 461 cm−1
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2016

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • surface by disordering the surface structure and forming hydrogenated amorphous carbon [4]. Similarly, Ga+ irradiation of polydimethylsiloxane (PDMS) results in micro- and nanopatterns with controlled stiffness for potential applications in tissue engineering [5]. Overall, the properties depend on the
  • . Finally, a transition of a carbonised phase to an amorphous carbon or graphite-like material occurs [13]. Another interesting field of investigation is the formation of nanoparticles by ion implantation. By adapting the impact energy, the implantation depth can be well controlled, and so the localisation
PDF
Album
Full Research Paper
Published 17 Nov 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g−1, it delivered a high reversible
  • vibration [4][8]. The other two peaks at about 1366 and 1592 cm−1 correspond to the D-band and G-band of disordered carbon and graphitic carbon, respectively. The higher intensity of the D-band means that the amorphous carbon has more defects and can offer more lithium storage sites [8][26]. It also reveals
  • that the major component of the obtained beaded nanofiber network is amorphous carbon with a small amount of MnO, which is in accordance with the XRD results. Moreover, an XPS investigation was performed to clarify the elements and their chemical states on the surface of the samples. All the XPS
PDF
Album
Full Research Paper
Published 14 Sep 2016

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • density of liquid sulfur is used again. The density of the carbon is unknown, but as the HCS are obtained by carbonization at 900 °C and the XRD pattern indicates mainly amorphous carbon, the density of amorphous carbon (ρamorphousC = 1.8 g·cm−3) [12] is assumed. This way a sulfur loading of 81 wt % is
  • the samples impregnated at ambient pressure (Figure 5a) show that up to a sulfur content of 60 wt % there are only the broad reflections of amorphous carbon visible. In the literature this behavior is attributed to sulfur being dispersed in mesopores, thereby losing its crystallinity [22][40]. For a
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • shortening of CNTs and in the introduction of surface defects at sidewalls [53]. It has been reported that sonication parameters such as time and aggressiveness, if not optimized, may damage the CNTs converting them into amorphous carbon nano-fibers [40]. Calendering: The calender is a three-roll mill that
  • discharge can be used to produce MWNTs with very few defects [2] and the production of large quantities is possible at low cost [127]. However, they contain a large amount of impurities such as graphite fragments, amorphous carbon, polyhedral carbon and metal catalyst particles. The carbonaceous impurities
PDF
Album
Full Research Paper
Published 12 Aug 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • , amorphous carbon and different defects [30][31], generally qualified as either topological or localized. The most common defects are comprised of edges and dangling bonds in addition to pentagonal and heptagonal defects, creating bends in the CNTs known to accommodate foreign atoms in the sp2-hybridized
  • increase in the intensity of the 285 eV edge and an even more featureless broad hump starting above 288 eV and extending up to 305 eV due to the C 1s → σ* transition, typical for extremely disordered carbon-carbon bonds. In fact, the smearing of this edge is characteristic of amorphous carbon, similar to
  • the C-K edge of the amorphous carbon support of the TEM grid used as a reference, shown in Figure 4b. Moreover, the apparent increase in the integrated area of the π* peak indicates an increase in the sp2 bonding fraction compared to other regions of the CNT and could be attributed to pyrolytic carbon
PDF
Album
Full Research Paper
Published 26 Jul 2016

Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

  • Julia Körner,
  • Christopher F. Reiche,
  • Thomas Gemming,
  • Bernd Büchner,
  • Gerald Gerlach and
  • Thomas Mühl

Beilstein J. Nanotechnol. 2016, 7, 1033–1043, doi:10.3762/bjnano.7.96

Graphical Abstract
  • individual nanotube was picked from a forest of FeCNTs grown by chemical vapor deposition [10] by a Kleindiek micromanipulator and placed at the free end of the cantilever. Electron beam-induced deposition of amorphous carbon on the contact point between FeCNT and cantilever ensures a strong attachment of
  • the nanotube. Next, amorphous carbon was also deposited at the free end of the FeCNT to lower its resonance frequency from above 2 MHz close to that of the cantilever. Throughout the process of carbon deposition, the oscillation of the FeCNT was observed with SEM to ensure close matching of the two
PDF
Album
Full Research Paper
Published 18 Jul 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • following, all KPFM measurements under illumination were performed at a wavelength of 515 nm with an optical power of 15 mW. For TEM investigations, the thin films were coated with a thin amorphous carbon film and removed from the glass substrate by floating on a diluted aqueous HF solution (10 wt %) and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016

Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

  • Martin Schilling,
  • Paul Ziemann,
  • Zaoli Zhang,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2016, 7, 591–604, doi:10.3762/bjnano.7.52

Graphical Abstract
  • conductivity before dip coating (applied for the small particles). Alternatively, such a surface conductivity was achieved by in situ flash evaporation of a few nanometers of amorphous carbon on top of the already prepared particles directly before RHEED inspection (applied for the larger particles). The
PDF
Album
Full Research Paper
Published 21 Apr 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • SWNTs, MWNTs, and impurities produced by these methods is dependent on the exact reactor conditions. Impurities include fullerenes, metal catalyst particles encapsulated by graphitic polyhedrons, and amorphous carbon. The majority of impurities can be removed by purification processes based on nitric
PDF
Album
Review
Published 01 Feb 2016

Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Axel Hemberg,
  • Luca Petaccia,
  • Jean-François Colomer,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 2263–2271, doi:10.3762/bjnano.6.232

Graphical Abstract
  • the D’-band) [48][49]. For the spectrum recorded after heating the sample to 900 °C, an additional D3-peak (1466 cm−1) was necessary for the fitting. The origin of this mode is not clear, but it has been attributed to amorphous carbon fraction of soot (e.g., organic molecules, fragments or functional
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • nanowires [7]. In the article by Oleksandr Dobrovolskiy and colleagues [8], different postgrowth purification treatments for platinum and cobalt FEBID structures are employed to fine-tune the magnetic properties of heterostructures. A novel application of electron beam-induced deposition of amorphous carbon
PDF
Editorial
Published 09 Sep 2015
Other Beilstein-Institut Open Science Activities