Search results

Search for "amyloid" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • [119]. The main pathogenic mechanisms of Alzheimer’s disease involve not only ROS overproduction but also amyloid beta (Aβ) fibril accumulation. Liu et al. reported a nanosystem employing polydopamine and ruthenium (PDA-Ru) as key elements for ROS scavenging and decomposition of mature Aβ fibrils [120
PDF
Album
Review
Published 12 Apr 2024

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • nanostructures such as carbon nanotubes and fullerenes were demonstrated to have chirality. However, the preparation of chirality-pure substrates still requires the combination of specific carbon nanostructures and homochiral functionalizations [150][151]. Protein misfolding, which may form amyloid aggregates
  • , is the main cause of neurodegenerative diseases. Qing et al. used a chiral cysteine- (L/R-Cys) modified graphene oxide (GO) to study the chirality of the aggregation process of the chiral amyloid β-protein(1-40) (Aβ(1-40)) [152]. The adsorption behaviors of Aβ(1–40) monomers and oligomers by QCM
PDF
Album
Review
Published 27 Oct 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • remarkable at concentrations greater than 8 µg/mL through affecting the aggregation of phenol-soluble modulins into amyloid fibrils. This result suggests that BBR may be a therapeutic agent against microbial-generated amyloid-involved diseases. BBR is also a phytochemical exhibiting a strong antiviral
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • assemblies at the nanoscale. This component exhibits regular aggregate properties through hydrogen bonding and ion interaction, which are highly similar to those of amyloid components, suggesting that it may be associated with the etiology of amyloid-related diseases. Besides, the resulting structure is as
  • toxic to cells as other amyloid structures. Their subsequent study continued to demonstrate that other single amino acids and metabolites, including cystine, tyrosine, and adenine, also self-assemble to form elongated and fibrillar structures at the nanoscale [35]. Likewise, the characteristics of these
  • combinations suggest that all assembled ultrastructures formed from various metabolites exhibit amyloidosis. These metabolites not only self-assemble into supramolecular amyloid fiber structures, but also have significant apoptotic effects on neuron model cells. Singh et al. [36] showed that the hydrophobic
PDF
Album
Review
Published 12 Oct 2021

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2020

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • all systems. Interestingly, our results indicate a higher mechanostability of Aβ42 fibrils compared to Aβ40, suggesting a significant correlation between mechanical stability and aggregation propensity (rate) in amyloid systems. That is, the higher the mechanical stability the faster the fibril
  • formation. Finally, we find that α-synuclein fibrils are thermally less stable than β-amyloid fibrils. We anticipate that our molecular-level analysis of the mechanical response under different deformation conditions for the range of fibrils considered here will provide significant insights for the
  • experimental observations. Keywords: β-amyloid; atomic force microscopy, mechanical deformation; molecular simulation; proteins; α-synuclein; Introduction All-atom molecular dynamics (MD) simulations have been employed to study the physical and chemical behaviour of the fundamental biomolecules of life (e.g
PDF
Album
Full Research Paper
Published 19 Feb 2019

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • tested on dyes, pigments and biomolecules and enhancement factors higher than 105 are observed. TERS mapping with a spatial resolution of 5 nm is demonstrated. Keywords: amyloid; enhanced spectroscopy; gold tips; plasmonics; TERS; Introduction Tip-enhanced Raman spectroscopy (TERS) combines the
  • ). This a small stably folded α/β protein with 91-residues (10 kDa) [64] that is capable of forming amyloid species like those associated with neurological diseases such as Alzheimer’s and Parkinson’s [65], and have recently been the subject of TERS investigations [66][67][68]. In particular, we focus on
  • the detection of toxic HypF-N oligomers that precede the formation of mature amyloid fibrils [69][70]. HypF-N oligomers (48 μM) are obtained by controlled aggregation (4 h, 25 °C, pH 5.5) of the HypF-N monomer in 50 mM acetate buffer, 12% (v/v) trifluoroethanol and 2 mM dithiothreitol [66]. The gold
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • terms of adhesion forces, higher values were obtained in dry conditions, reaching up to 50 nN. Under native conditions, lower adhesive forces were obtained (up to 500 pN) but the adhesive seemed to behave like a functional amyloid, as evidenced by the recorded characteristic sawtooth force–extension
  • functional amyloid, suggesting that among its proteinaceous constituents there are most likely proteins with amyloid quaternary structures or rich in β-sheets. These results extend our knowledge on sea urchin adhesive composition and mechanical properties essential for the engineering of biomimetic adhesives
  • proteinaceous fibres [12] that have been identified as amyloid fibres using the fluorochrome dye thioflavine-T, in addition to Raman spectroscopy and AFM [1]. AFM revealed a series of sawtooth mechanical responses reflecting the repetitive breaking of sacrificial bonds within an intermolecular β-sheet as
PDF
Album
Full Research Paper
Published 24 Aug 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • are core materials in the living body [16]. For example, cell membranes [17] and chromosomes [18][19] exhibit LC-like phases, and some pathological states are closely related to LC formation processes, such as those of amyloid fibrils [20]. Consequently, complex self-organization dynamics of living
PDF
Album
Review
Published 18 Jan 2018

Strategy to discover full-length amyloid-beta peptide ligands using high-efficiency microarray technology

  • Clelia Galati,
  • Natalia Spinella,
  • Lucio Renna,
  • Danilo Milardi,
  • Francesco Attanasio,
  • Michele Francesco Maria Sciacca and
  • Corrado Bongiorno

Beilstein J. Nanotechnol. 2017, 8, 2446–2453, doi:10.3762/bjnano.8.243

Graphical Abstract
  • Abstract Although the formation of β-amyloid (Aβ) fibrils in neuronal tissues is a hallmark of Alzheimer disease (AD), small-sized Aβ oligomers rather than mature fibrils have been identified as the most neurotoxic species. Therefore, the design of new inhibitors, able to prevent the aggregation of Aβ, is
  • Aβ and blocking the early steps of amyloid aggregation. Here, we show the combination of high-efficiency slides (HESs) with peptide microarrays as a promising tool for identifying small peptides that bind Aβ monomers. To this aim, HESs with two immobilized reference peptides, (i.e., KLVFF and Semax
  • , and scientists believe that the observed build-up of plaque between nerve cells could be the cause of cell death [1]. Two peptides, 40 and 42 amino acids long, known as Aβ40 and Aβ42 amyloid, are the main constituents of the fibrillar plaques [2]. Although amyloid fibrils were initially considered the
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • NCND effects on the peptide supramolecular structure. Thioflavin T is a dye that binds to hydrophobic grooves formed by at least four consecutive beta-strands, leading to fluorescence that is used to assess the peptide amyloid character [35]. Fluorescence arises from the limited rotation of a single
  • bond between two aromatic rings composing the dye, namely the benzothiazole and the dimethylanilino units [36]. Although its fluorescence can also be increased by an increase of solvent viscosity [36], in aqueous environments, it is effectively and universally used as an amyloid marker thanks to its
  • ability to laterally bind to the surface of peptide fibrils [37]. This interaction has been the subject of numerous studies that overall elucidated that an increase in fluorescence intensity linearly correlates to amyloid fibril concentration [38]. In the presence of the dye, the NCNDs showed negligible
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • , sonication-based method of obtaining CR-functionalized SWNTs. Congo red is best known as an amyloid specific dye, used for years in histochemical analyses for the detection of amyloid fibrils, which – when stained with CR – present characteristic apple-green birefringence under the polarized light microscope
  • . Birefringence implies anisotropy and ordered arrangement of dye molecules bound to regular, beta-structured amyloid fibrils [29][30]. Congo red molecules self-assemble in water solutions producing supramolecular entities stabilized by π–π interactions between aromatic rings [31][32][33]. Supramolecular Congo
PDF
Album
Full Research Paper
Published 16 Mar 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • , vitronectin, α-2-macroglobulin, and Aβ, a fragment of the amyloid precursor protein [35][36][37][38]. The degradation of extracellular matrix components and its strong upregulation in patient samples indicates the involvement of HTRA1 in arthritic diseases where it may affect the degradation of cartilage as
PDF
Album
Full Research Paper
Published 07 Feb 2017

Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

  • Silvia Varela-Aramburu,
  • Richard Wirth,
  • Chian-Hui Lai,
  • Guillermo Orts-Gil and
  • Peter H. Seeberger

Beilstein J. Nanotechnol. 2016, 7, 1278–1283, doi:10.3762/bjnano.7.118

Graphical Abstract
  • carbohydrates [13], proteins [14], antibodies [15] and DNA [16] are commonly used as multivalent materials for biological studies. Gold nanoparticles have been used in vivo as radiotracers [15][17], for targeted delivery [18] and, when functionalized with carboxylic acids, inhibit β-amyloid fibril growth
PDF
Album
Supp Info
Letter
Published 08 Sep 2016

Functionalization of α-synuclein fibrils

  • Simona Povilonienė,
  • Vida Časaitė,
  • Virginijus Bukauskas,
  • Arūnas Šetkus,
  • Juozas Staniulis and
  • Rolandas Meškys

Beilstein J. Nanotechnol. 2015, 6, 124–133, doi:10.3762/bjnano.6.12

Graphical Abstract
  • in the development of novel nanomaterials. Under certain conditions, amyloid protein α-synuclein forms well-ordered structures – fibrils, which have proven to be valuable building blocks for bionanotechnological approaches. Herein we demonstrate the functionalization of fibrils formed by a mutant α
  • self-assembled structures, amyloid proteins have become a very attractive material in the field of nanobiotechnology [1]. Many proteins or peptides can form amyloids under appropriate experimental conditions and recent studies suggest that amyloid formation is a generic property of the polypeptide
  • , have been investigated by a combination of techniques such as atomic force microscopy (AFM), transmission electron microscopy (TEM), measurement of thioflavin T (ThT) fluorescence, etc. [6][7]. In this study, α-synuclein (α-Syn), the amyloid protein that is linked to several neurodegenerative diseases
PDF
Album
Full Research Paper
Published 12 Jan 2015

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • mechanical properties of single molecules [15][16]. FS was firstly used to study the polysaccharide dextran [17], and was later extended to other molecules such as DNA [18][19], proteins [20][21], other polysaccharides [22][23][24], and amyloid proteins [25][26]. Mechanical properties such as tensile
PDF
Album
Full Research Paper
Published 27 Mar 2014

Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects

  • Hlengisizwe Ndlovu,
  • Alison E. Ashcroft,
  • Sheena E. Radford and
  • Sarah A. Harris

Beilstein J. Nanotechnol. 2013, 4, 429–440, doi:10.3762/bjnano.4.50

Graphical Abstract
  • , Leeds LS2 9JT, UK 10.3762/bjnano.4.50 Abstract We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects
  • considered when quantifying the mechanical properties of amyloid fibres containing defects. Keywords: amyloid; fibril fragmentation; steered molecular dynamics (SMD); structural defects; Introduction Amyloid fibrils are biomaterials that are commonly associated with human disease [1]. Over recent years
  • fibrils [9]. Before we can design fibrils with bespoke material properties, however, we first need to understand how the arrangement of the individual β-sheets modulates their mechanical behaviour. Amyloid fibrils, like many crystalline materials, exhibit polymorphism. The predominant polymorph obtained
PDF
Album
Full Research Paper
Published 04 Jul 2013

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • effort to reveal the structure of the fibrils at the nanoscale. Based on the combined theoretical and experimental analysis, the most likely models of fibril formation and aggregation are suggested. Keywords: amyloid-like fibrils; bioinspired conjugates; molecular dynamics simulations; oligopeptides
  • ; oligothiophenes; self-assembly; Introduction Amyloid and amyloid-like fibrillar aggregates, formed by natural proteins or oligopeptides, have attracted much attention both due to their involvement in medical pathologies (such as Alzheimer’s disease, Parkinson’s disease, etc. [1][2][3]) and their possible
  • even greater structural polymorphism than observed in natural amyloid fibers, keeping in mind that synthetic chemistry provides more variability in the structure of the building blocks, including branched molecular topologies [16]. A number of hypothesized self-organized morphologies that may be
PDF
Album
Review
Published 05 Sep 2011
Other Beilstein-Institut Open Science Activities