Search results

Search for "applications" in Full Text gives 1682 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • , feed, pharmaceutical and cosmetic applications. The PSDs measured by the three titanium dioxide manufacturers based on electron micrographs are in excellent agreement with one another but differ significantly from those published elsewhere. Importantly, in some cases, the PSDs result in a different
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • clusters have been reported in the literature. Our G0W0 calculations will provide a benchmark to help accelerate the research on clusters and creating materials with high stability that can be used for advanced energy storage applications [17][18][19]. In this work, we have employed the generalized
PDF
Album
Full Research Paper
Published 15 Mar 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • ; Introduction The advent of two-dimensional (2D) layered materials beyond graphene has initiated a new field of research [1][2][3]. In the family of 2D layered structures, transition metal dichalcogenides (TMDs) have attracted considerable attention from academia and regarding potential applications [4][5][6][7
  • X–M–X or MX2 triatomic layer, where X is a chalcogen atom (e.g., sulfur, selenium, or tellurium) and M is a transition metal atom (e.g., molybdenum or tungsten) [10]. Among the layered TMD materials, molybdenum disulfide, MoS2, is of particular interest in optoelectronic applications because of its
  • transition to a direct bandgap semiconductor with very high photoluminescence quantum yield when thinned down to a monolayer [13][14][15][16][17]. Its unique electronic and optical properties could provide an edge in many future applications. The multilayers MoS2 structures are of the most common 2Hc type
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • ; ultrahigh stretchability; Introduction In recent years, there has been significant advancement in the field of stretchable and soft electronic devices due to the increasing demand for their applications in various domains [1][2]. These applications include the detection of human motion [3][4][5
  • demands of these applications [20]. Among various factors considered, the parameters of sensitivity and stretchability hold significant importance in determining the suitability of a strain sensor for practical applications. In recent years, scholars have acknowledged and addressed the aforementioned
  • observed in crack-based strain sensors [37]. It is evident that the helical strain sensor exhibits exceptional stability and recoverability, thereby demonstrating excellent reproducibility and durability in practical applications. In Figure 2h, the helical sensor demonstrates exceptional strain-sensing
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • ’ magnetization cycle, as Bloch and Neel theorized [11][13]. Superparamagnetic iron oxide nanoparticles for drug delivery, diagnosis, and cancer therapy have gained wider acceptance in biomedical applications [14]. They have received notable attention in clinical applications such as early disease diagnosis (e.g
  • of passive targeting in magnetic fields for photothermal cancer therapy, with PDA holds great promise for future applications. Therefore, surface modification with PDA is recognized as a favorable alternative for enhancing the biocompatibility of non-biodegradable substances. A study focused on
  • noteworthy potential in photothermal therapy, magnetic targeting, MRI imaging, and chemotherapy. This versatile approach represents a significant advancement in cancer treatment modalities, offering a promising avenue for future research and clinical applications. Our work provides a nanomaterial endowed
PDF
Album
Full Research Paper
Published 28 Feb 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • larger than the geometric (electromagnetic) inductance in thin films and nanowires made of amorphous superconductors [16]. It is, therefore, useful in applications that require compact microwave resonators with low loss [17], including microwave filters [18] and resonant radiation detectors [19]. Large
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • surface topography [7]. A sharper needle tip leads to more accurate measurements [8]. During the scanning process, tip and sample come into mutual contact, causing wear on the tip [9]. Tip wear or damage in practical applications can have severe consequences, including reduced image quality and erroneous
  • evaluation of the effects that different scanning parameters have on tip wear. This detailed assessment is instrumental for optimizing scanning conditions, ultimately enhancing the longevity and performance of the AFM tip in various applications. Effect of scanning parameters on tip wear The wear test
PDF
Album
Full Research Paper
Published 14 Feb 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • and product quality. Aluminum is widely used in food packaging and food processing applications, including dairy products. However, the interaction between aluminum and milk content requires further investigation to understand its implications. In this work, we present the results of multiscale
  • corona; Introduction The interface between biological systems and engineered materials has gained significant attention in recent years because of its wide range of applications, spanning from food to medicine and environmental science [1][2]. This interface plays a crucial role in ensuring the safety
  • shown that ripened cheese and cheese spreads acquire a higher aluminum content as compared to other milk products [6]. Aside from wrapping and container packaging, aluminum has found a wide popularity in other applications, such as manufacturing of kitchen utensils, cosmetics, and components for medical
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • DNA origami nanostructures is rarely explored, yet promising applications are foreseen to require such information. DNA nanostructures have been explored as drug delivery vessels for chemotherapeutics [1][2]. With the constant pursuit of effective targeting strategies [3], they could eventually be
  • lithographic applications. Conclusion We explored model ion interactions with DNA origami nanostructures, showing promise for fusing these state-of-the-art nanotechnology approaches. The main effects of ion beams on nanostructures are shown in Figure 4A–D. The most important observation is that the shape of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • unusual hydrodynamic behavior of electrons, which was observed in narrow graphene nanoconstrictions [6]. Given these unique properties, it is unsurprising that graphene became a top candidate for a broad range of applications in optoelectronics and possible future energy-efficient and high-speed
  • . Complementary studies performed using both in situ and ex situ AFM reveal the modification in SiO2/Si substrate topography. Our results are important not only for applications of water-assisted FEBIE to etching carbon allotropes and SiO2 materials but also in other fields. For example, where electron-driven
PDF
Album
Full Research Paper
Published 07 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • their high potential applications in various fields, including theragnostics. The PLGA SPION nanoparticles were modified to carry siRNA for silencing the inflammatory cytokine Cox-2 in activated macrophages and to serve as a tracer for locating activated macrophages in a mouse model of intra-uterine
  • system capable of transporting NPs that could carry iron oxide (IO) nanoparticles, IR780, and CHL for cancer theragnostic applications. Materials and Methods Chlorambucil (C0253), PLGA 504H (719900), IR780 (425311), FeSO4·7H2O (215422), FeCl3·6H2O (236489), NaOH (221465), oleic acid (364525), Pluronic™ F
  • and 72 h. The cytotoxicity results for F127@NP and F127-folate@NP was significantly lower at 72 h than that for PVA@NP. There were no statistically significant differences between F127@NP and F127-folate@NP. Discussion Nanomedicines have their applications in a number of cancer treatments and
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • of NR composite. The usage of GO-VTES may be suitable for the preparation of NR composites for tire applications as the composite may reduce water permeability and enhance the abrasion resistance of commercial products [30]. Experimental Materials The natural rubber used in this work is high-ammonia
PDF
Album
Full Research Paper
Published 05 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • nanodot applications include quantum performance enrichment for diodes [15][16], memory devices [17][18], transistors [19][20], and solar cells. They are also widely used in biological applications [21][22][23]. QDs have been used in various functions of solar cells, including electron- or hole
  • quantum dots and nanoparticles in organic solar cells has already been demonstrated [29][30][31][32][33][34]. The list of both materials and types, as well as applications, is not limited. Moreover, new quantum dots with innovative properties are still being researched and produced [35][36][37]. This
  • [39][40]. One of the main existing challenges in synthesizing QDs is to increase their photoluminescence efficiency while simultaneously shifting the photoluminescence maximum to longer wavelengths. Initial applications focused on OLEDs. CdSe/ZnS quantum dots are luminescent inorganic nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • the mechanical bandwidth of scanner and cantilever. In most ORT applications, the piezo that tracks the topography changes is also used to generate a periodic Z axis motion. However, the resonance frequency of the piezo sets a limit on the actuation frequency. To overcome this problem, one approach is
  • led to a significant increase in the achievable ORT frequency [24]. The other speed-limiting factor is the snap-off ringing of the cantilever, especially for applications in air and vacuum [27]. Although this physical phenomenon can be used to extract material properties [28], it slows down the
  • disturbance is common in AFM measurements, since it is difficult to avoid the sample tilt in real AFM applications. While a single integral controller ensures zero steady-state error for a step disturbance, for a triangular disturbance, the error is a constant non-zero value, which can be used to compare the
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • applications in many fields of science and technology, including nanofabrication [1], optical coatings [2], sensing [3][4][5], and others [6]. Many synthesis protocols have been developed for precise control of the pore structure of PAAO [7], which allow for the creation of nanoscale patterns for various types
  • of templates, including evaporation masks [8][9][10], molds for nanowire array production using the supercritical fluid method [11], electrochemical deposition [12], atomic layer deposition [13], or traps for colloidal nanoparticle assembly [14]. Several applications, for example, color filtering [15
  • . This makes it particularly suitable for quality control in the small-scale production of thin PAAO membranes for optical applications and other uses, where precise thickness is of importance. Experimental A dedicated setup (Figure 5) was built and optimized for anodization of 10 mm × 10 mm aluminum
PDF
Album
Full Research Paper
Published 31 Jan 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • ]. Biocompatibility assessment is an essential aspect of the development of NEs, particularly for biomedical and cosmetic applications, as it determines the safety and efficacy of the formulations. The assessment involves evaluating the potential cytotoxicity and genotoxicity of the NEs on different cell types and
  • our study were obtained, indicating the formation of stable and suitable NEs for larvicidal applications [30]. It is noteworthy that several studies have utilized essential oils containing chemical components structurally analogous to terpenes, thus, achieving table formulations using the same
  • characteristics, between 20 and 30 mV, have been described in other studies about nanoemulsions containing terpenes suitable for larvicidal applications [30][33][34]. Regarding the physical characterization, the bluish reflex is characteristic of this type of colloidal system, and it is attributed to the Tyndall
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • . Colorimetric biosensors have become popular in analytical applications due to their high sensitivity, convenience, and ease of signal readout [7][8]. These biosensors have been extensively utilized in pathogen identification, primarily because of their ability to rapidly display results in visible color [9][10
  • nanoparticles (i.e., silver nanoplates, Ag NPLs) covered with a layer of Pt atoms to improve the peroxide activity of NPLs, and use them as colorimetric biosensor materials. Metallic NPLs were employed in a variety of applications, including antibacterial activity [17][18][19], hazardous dye removal [20
  • during long-term storage and can be manufactured using normal oligonucleotide chemical synthesis processes, with minor chemical changes if necessary. Aptamers are thus regarded as a good baroreceptor in a variety of biological applications [27][28]. Colorimetric paper-based biosensors are the most
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Study of the reusability and stability of nylon nanofibres as an antibody immobilisation surface

  • Inés Peraile,
  • Matilde Gil-García,
  • Laura González-López,
  • Nushin A. Dabbagh-Escalante,
  • Juan C. Cabria-Ramos and
  • Paloma Lorenzo-Lozano

Beilstein J. Nanotechnol. 2024, 15, 83–94, doi:10.3762/bjnano.15.8

Graphical Abstract
  • need to reduce the risk of pandemic contamination. Early, reliable, and accurate diagnosis is therefore essential for health and food safety [4][5]. In this context, immunodetection seems to be a very good option [6]. There are many applications of immunoassay devices in health, food industry, and
  • clinical applications. Immunoassay devices have been used not only for the detection of bacteria and viruses [7], but also for the measurement of drugs [8] and hormones [9], or for the determination of glucose in urine [10]. The specificity of antigen–antibody binding and how the antibody is attached to
  • applications, such as the immobilisation of enzymes and microorganisms [12][13], and the immobilisation of antibody in enzyme immunoassays [14]. Nylon 6 (or polyamide 6, PA6) nanofibers (NFs) have been used as an immobilisation surface in biosensors [15]. Efficiency studies of nanofibres manufactured by
PDF
Album
Full Research Paper
Published 15 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • cytotoxicity test revealed that the BBR NPs/PLA nanofiber scaffold did not induce any changes in morphology and proliferation of MA-104 cell monolayers. It suggests that the BBR/PLA and BBR NPs/PLA nanofiber scaffolds can be used in different biomedical applications, such as wound dressing, drug delivery
  • -based drug delivery systems for specific applications. Result and Discussion Morphology of PLA and BBR-loaded PLA nanofiber scaffolds In order to evaluate the distribution of BBR compositions in the electrospun PLA nanofibers, the morphology of BBR powder, BBR NPs, and electrospun nanofibers was
  • applications which require different release behaviors for desired therapeutic effects. Ma et al. [3] reported that the prolonged release of BBR from PCL/collagen nanofiber scaffolds up to 27 days was favorable for bone tissue repair. Meanwhile, a high concentration of BBR release within the first 24 h brought
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • history and a wide range of applications, especially in biology, medicine, tissue engineering, and pharmacy. The multitude of application areas is related to their exceptional properties: biocompatibility, biodegradability, nontoxicity, good permeability for substances dissolved in water (e.g., oxygen and
  • , drugs, metal nanoparticles, metal oxide nanoparticles, carbon nanotubes, or biomolecules. This is a very important advantage that opens ways of designing composite hydrogels with various properties and applications such as biomedical [8][9][10], biosensors [11][12][13], wearable electronics [14][15][16
  • , polypyrrole, and poly(ethylenedioxythiophene) [29][30][31], allows for the formation of conductive hydrogels. Conducting hydrogels possess properties of both conductive polymers and hydrogels, which makes them attractive functional materials for many applications in several fields of science and technology
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • a few micrometers and the effect of direct electron cooling, which can improve sensitivity in typical closed-loop cycle 3He cryostats for space applications. We study a novel concept of cold-electron bolometers with two SIN tunnel junctions and one SN contact. The amplitude–frequency characteristics
  • antennas for frequencies of 210 and 240 GHz with cold-electron bolometers, described in the present paper, is proposed to be suitable for such applications. Two arrays placed on a single silicon chip with 7 mm × 7 mm size can independently detect radiation at two frequencies. Here, in the design of
  • temperature [20][21][22][23]. This advantage is important for space, balloon, and ground-based applications. While dilution refrigerators are able to cool down below 50 mK, they cannot operate in extreme or even slightly unstable conditions; even the small variation of a tilt angle can lead to the cryostat
PDF
Album
Full Research Paper
Published 04 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • ], transmission electron microscopy (TEM) [1][8][9][10][11], scanning transmission X-ray microscopy [12][13], and magneto-optical Kerr effect microscopy [14][15]. Possible applications of Py nanodisks were proposed for zero-hysteresis magnet sensors, magnetic logic devices, and data storage [16]. Py is a nickel
  • away from the nanostructures can affect the overall mechanical stability of the membrane. Dry etching is generally better suited for bulk substrate applications as discussed in section “Preparation of nanostructures starting from a bulk substrate”. Stencil lithography Stencil lithography was
  • associated with resist such as the edge bead problem and resist melting during deposition. This approach is ideal for applications on small substrates where spin coating of a homogeneous resist layer is difficult. This technique is particularly suitable for TEM application because TEM grids have the SiN
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • applications, especially because of their biocompatibility. We synthesized and characterized fluorescent PDA NPs of 10–25 nm diameter based on a protein containing a lysine–glutamate diad (bovine serum albumin, BSA) and determined whether they can penetrate and accumulate in bacterial cells to serve as a
  • of antimicrobial resistance of bacteria [5], this appears as a promising route to deliver antimicrobials while reducing the drug doses and subsequent harmful side effects in antibacterial applications. To this end, different types of ONPs have been used, such as liposomes [6] and nanoparticles (NPs
  • bacteria. Inspired by the eumelanin aggregates in human skin, polydopamine nanoaggregates (here referred to as nanoparticles, i.e., PDA NPs) have emerged as promising nanovectors for biomedical applications [11][12], especially because of their biocompatibility [13][14] and photothermic properties [15][16
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • ; quantum chemical calculation; ultrahigh vacuum; Introduction In recent years, gold nanostructures have received much attention owing to their dielectric properties [1], their biocompatibility [2], and their electrical properties [3][4], which enable a multitude of exciting applications in the field of
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Spatial variations of conductivity of self-assembled monolayers of dodecanethiol on Au/mica and Au/Si substrates

  • Julian Skolaut,
  • Jędrzej Tepper,
  • Federica Galli,
  • Wulf Wulfhekel and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2023, 14, 1169–1177, doi:10.3762/bjnano.14.97

Graphical Abstract
  • , Niels Bohrweg 2, 2333 CA Leiden, Netherlands Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany 10.3762/bjnano.14.97 Abstract Determining the conductivity of molecular layers is a crucial step in advancing towards applications in molecular
  • the use in applications, the properties of such layers of molecules and the interface they form with the metal substrate have to be investigated carefully and systematically. In order to achieve comparability between different types of molecules, ordered layers are favorable, which makes self
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2023
Other Beilstein-Institut Open Science Activities