Search results

Search for "biological materials" in Full Text gives 33 result(s) in Beilstein Journal of Nanotechnology.

Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects

  • Stanislav N. Gorb and
  • Alexander E. Filippov

Beilstein J. Nanotechnol. 2014, 5, 837–845, doi:10.3762/bjnano.5.95

Graphical Abstract
  • significance Pure bulk materials are absent in biology: biological materials are always composites. Also material gradients are well known in biological systems, where particular change in composition of different bulk materials along a biological structure may lead to novel and often unexpected properties
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2014

The surface microstructure of cusps and leaflets in rabbit and mouse heart valves

  • Xia Ye,
  • Bharat Bhushan,
  • Ming Zhou and
  • Weining Lei

Beilstein J. Nanotechnol. 2014, 5, 622–629, doi:10.3762/bjnano.5.73

Graphical Abstract
  • contact angles should be decided. That will provide an intuitive guide for designing artificial heart valve surfaces. In later research, based on the above theorical study we should manufacture the mastoid microstructures on the biological materials surface. Further study of the relationship between
PDF
Album
Full Research Paper
Published 13 May 2014

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • widespread usage, especially among soft materials such as biological materials and polymers, bimodal AFM has demonstrated its capability to provide new contrast and information in the higher order mode [4][5][6][7][8]. The traditional choice in bimodal AFM is to oscillate the cantilever at its first two
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • and biological materials, as well as in the study of other rate-dependent phenomena, such as binding or folding/unfolding events in complex biomolecules. Methods The details of the spectral inversion method using the torsional harmonic cantilever have been described in detail elsewhere [8][11], so
PDF
Album
Full Research Paper
Published 07 Feb 2013

Nano-structuring, surface and bulk modification with a focused helium ion beam

  • Daniel Fox,
  • Yanhui Chen,
  • Colm C. Faulkner and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2012, 3, 579–585, doi:10.3762/bjnano.3.67

Graphical Abstract
  • properties of the surface [18]. Some other applications to date include imaging of chemical variations at high resolution [19], quantitative dopant contrast mapping [20] and imaging of uncoated biological materials [21]. In this work we further investigate the ability of the HIM to modify a material’s
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2012

Nano-FTIR chemical mapping of minerals in biological materials

  • Sergiu Amarie,
  • Paul Zaslansky,
  • Yusuke Kajihara,
  • Erika Griesshaber,
  • Wolfgang W. Schmahl and
  • Fritz Keilmann

Beilstein J. Nanotechnol. 2012, 3, 312–323, doi:10.3762/bjnano.3.35

Graphical Abstract
  • advantages of surface scanning make the nano-FTIR approach extremely robust and useful for the study of biological materials. The samples need not be thin, only reasonably flat, thus avoiding thin-section preparations, which are prone to damage. Unavoidable topographic obstacles resulting from the cutting
PDF
Album
Full Research Paper
Published 05 Apr 2012

Biomimetic materials

  • Wilhelm Barthlott and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2011, 2, 135–136, doi:10.3762/bjnano.2.16

Graphical Abstract
  • only appeared on the market in 1999. Bionics concentrated in the first decades, in particular, on highly complex biomechanic problems: the hovering of humming birds and robot locomotion. Today a focal point is the incredibly specific diversity of biological materials, materials with micro and nano
PDF
Editorial
Published 10 Mar 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • micropatterned surfaces with C20F42 as shown in Figure 11 and Table 3. Conclusion Biomimetics allows one to mimic biology or nature and for engineers to develop materials and devices of commercial interest. Properties of biological materials and surfaces result from a complex interplay between surface morphology
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities