Search results

Search for "biomedical" in Full Text gives 377 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Optical bio/chemical sensors for vitamin B12 analysis in food and pharmaceuticals: state of the art, challenges, and future outlooks

  • Seyed Mohammad Taghi Gharibzahedi and
  • Zeynep Altintas

Beilstein J. Nanotechnol. 2025, 16, 2207–2244, doi:10.3762/bjnano.16.153

Graphical Abstract
  • biosensors into cellular bioimaging and the potential for non-invasive in vitro and in vivo analysis demonstrate their versatility and applicability across a broad spectrum of biomedical research, diagnostics, and nutrient analysis. Keywords: carbon dots; cobalamin; energy transfer; fluorescence sensor
  • membranes had potential for biomedical and food applications for VB12 determination in pharmaceuticals, human serum, egg yolk, and fish tissue [113]. Selvakumar and Thakur utilized a dipstick-based immuno-CL biosensor to detect VB12 in two different energy drinks, where the antibody–antigen interaction
PDF
Album
Review
Published 05 Dec 2025

Ultrathin water layers on mannosylated gold nanoparticles

  • Maiara A. Iriarte Alonso,
  • Jorge H. Melillo,
  • Silvina Cerveny,
  • Yujin Tong and
  • Alexander M. Bittner

Beilstein J. Nanotechnol. 2025, 16, 2183–2198, doi:10.3762/bjnano.16.151

Graphical Abstract
  • transmission of airborne viruses, such as influenza. Keywords: AFM; humidity; hydrophilicity; hydrophobicity; nanoparticles; sum frequency generation spectroscopy; viruses; water; wetting; Introduction Gold nanoparticles (AuNPs) have been a staple in biomedical and biophysical research [1][2] for almost a
  • selected surface [21][22][36][49]. However, these studies were performed on particle clusters in crowded environments, which induce collective phenomena [36][49] that are not in our scope. Conclusion Gold nanoparticles (AuNPs) have been widely investigated for biomedical applications like biochemical
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2025

Missing links in nanomaterials research impacting productivity and perceptions

  • Santosh K. Tiwari and
  • Nannan Wang

Beilstein J. Nanotechnol. 2025, 16, 2168–2176, doi:10.3762/bjnano.16.149

Graphical Abstract
  • working extensively in various aspects of nanotechnology, we find that the majority come from chemistry, physics, materials science, and metallurgy. Very few come from other fields such as mechanical, energy, electronics, biomedical engineering, and mathematics. The experts belonging to chemistry, physics
PDF
Perspective
Published 03 Dec 2025

Rapid synthesis of highly monodisperse AgSbS2 nanocrystals: unveiling multifaceted activities in cancer therapy, antibacterial strategies, and antioxidant defense

  • Funda Ulusu,
  • Adem Sarilmaz,
  • Yakup Ulusu,
  • Faruk Ozel and
  • Mahmut Kus

Beilstein J. Nanotechnol. 2025, 16, 2105–2115, doi:10.3762/bjnano.16.145

Graphical Abstract
  • effects by efficiently eliminating DPPH activity. This research highlights the potential of AgSbS2 NCs as versatile agents with applications in biomedical and environmental domains, including cancer therapy, antimicrobial strategies, and free radical neutralization. Keywords: AgSbS2 nanocrystals
  • to prokaryotic cells including microorganisms such as bacteria, viruses, and fungi [13]. Therefore, silver-based nanoparticles have been the subject of many biomedical studies [14][15][16][17][18]. In a study conducted in this context; the effects of α-AgS nanoparticles produced using the fungus
  • Humicola sp. in biomedical applications were investigated. Cancer experiments were carried out using breast cancer and Burkitt’s lymphoma cancer cells, while the biocompatibility tests of α-AgS nanoparticles were also conducted using human peripheral blood mononuclear cells (PBMCs) [18]. Additionally
PDF
Album
Full Research Paper
Published 19 Nov 2025

Toward clinical translation of carbon nanomaterials in anticancer drug delivery: the need for standardisation

  • Michał Bartkowski,
  • Francesco Calzaferri and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2025, 16, 2092–2104, doi:10.3762/bjnano.16.144

Graphical Abstract
  • nanotubes, and carbon dots, have attracted considerable interest as nanocarriers for drug delivery due to their unique physicochemical properties. Their high surface area, biocompatibility, and modifiable surface chemistry make them highly attractive for a range of biomedical applications. However, concerns
  • delivery systems (DDSs); nanocarriers; quality control (QC); Introduction Nanomaterials Nanomaterials (NMs) have an extensive array of various properties and applications across many industries, including the biomedical, health care, food/agriculture, industrial, environmental, electronic, and renewable
  • energy sectors (Figure 1). NMs have seen use as antimicrobial agents [1], catalysts [2], bioimaging agents [3][4][5][6], magnetic particle imaging agents [7], nanofluids [8], antiviral agents [9], photothermal convertors [10], and in environmental remediation [11]. Topically, the biomedical applications
PDF
Album
Supp Info
Perspective
Published 18 Nov 2025

Beyond the shell: exploring polymer–lipid interfaces in core–shell nanofibers to carry hyaluronic acid and β-caryophyllene

  • Aline Tavares da Silva Barreto,
  • Francisco Alexandrino-Júnior,
  • Bráulio Soares Arcanjo,
  • Paulo Henrique de Souza Picciani and
  • Kattya Gyselle de Holanda e Silva

Beilstein J. Nanotechnol. 2025, 16, 2015–2033, doi:10.3762/bjnano.16.139

Graphical Abstract
  • /bjnano.16.139 Abstract Hyaluronic acid (HA) and β-caryophyllene (βCp) are two promising agents in biomedical research, each offering unique therapeutic benefits. The successful integration of these compounds into a single, functional nanofiber system presents a significant technical challenge, demanding
  • encapsulated within a PLA shell, highlighting substantial potential for biomedical applications by overcoming key material integration hurdles. Keywords: co-axial nanofibers; electrospinning; hybrid nanosystem; nanofibers; nanoemulsion; poly(lactic acid); Introduction Driven by the significant potential of
  • materials) [15]. However, achieving high-quality structures for biomedical use with tailored properties requires careful management of various processes, materials, and environmental parameters [16], necessitating thorough optimization of the electrospinning conditions. This includes precise control over
PDF
Album
Full Research Paper
Published 12 Nov 2025

The cement of the tube-dwelling polychaete Sabellaria alveolata: a complex composite adhesive material

  • Emilie Duthoo,
  • Aurélie Lambert,
  • Pierre Becker,
  • Carla Pugliese,
  • Jean-Marc Baele,
  • Arnaud Delfairière,
  • Matthew J. Harrington and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2025, 16, 1998–2014, doi:10.3762/bjnano.16.138

Graphical Abstract
  • underwater adhesive materials for various applications, particularly in the industrial and biomedical fields [3][4]. Polychaetes of the family Sabellariidae are one of the model organisms that have been studied extensively for their adhesion and have fascinated researchers since the 18th century [5]. Two
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2025

Targeting the vector of arboviruses Aedes aegypti with nanoemulsions based on essential oils: a review with focus on larvicidal and repellent properties

  • Laryssa Ferreira do Nascimento Silva,
  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Mariana Alice Gonzaga Gabú,
  • Maria Cecilia Queiroga dos Santos,
  • Daiane Rodrigues dos Santos,
  • Mylena Lemos dos Santos,
  • Gabriel Bezerra Faierstein,
  • Rosângela Maria Rodrigues Barbosa and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2025, 16, 1894–1913, doi:10.3762/bjnano.16.132

Graphical Abstract
  • biomedical applications. These include: (a) superior stability during storage compared to that of macroemulsions, attributed to their small droplet size, which prevents flocculation, creaming, and sedimentation; (b) enhanced bioavailability and improved aqueous solubility of lipophilic molecules; (c
PDF
Album
Review
Published 28 Oct 2025

Self-assembly and adhesive properties of Pollicipes pollicipes barnacle cement protein cp19k: influence of pH and ionic strength

  • Shrutika Sawant,
  • Anne Marie Power and
  • J. Gerard Wall

Beilstein J. Nanotechnol. 2025, 16, 1863–1872, doi:10.3762/bjnano.16.129

Graphical Abstract
  • scalability concerns [10]. Additionally, M. edulis Mfp exhibits optimal adhesion under acidic conditions [11], potentially limiting its biomedical application. Meanwhile, synthetic sealants based on DOPA functionalisation of natural or synthetic polymers have shown promise in biomedical applications, but
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2025

On the road to sustainability – application of metallic nanoparticles obtained by green synthesis in dentistry: a scoping review

  • Lorena Pinheiro Vasconcelos Silva,
  • Joice Catiane Soares Martins,
  • Israel Luís Carvalho Diniz,
  • Júlio Abreu Miranda,
  • Danilo Rodrigues de Souza,
  • Éverton do Nascimento Alencar,
  • Moan Jéfter Fernandes Costa and
  • Pedro Henrique Sette-de-Souza

Beilstein J. Nanotechnol. 2025, 16, 1851–1862, doi:10.3762/bjnano.16.128

Graphical Abstract
  • Grosso do Sul, Avenida Costa e Silva, s/n – Zip Code: 79070-900 – Bairro Universitário, Campo Grande/MS, Brazil 10.3762/bjnano.16.128 Abstract The growing interest in green-synthesized metallic nanoparticles reflects a global shift toward sustainable, eco-friendly technologies in biomedical innovation
  • recently become the focus of significant attention [18][19]. The eco-friendly applications of AgNPs in the biomedical, pharmaceutical, cosmetic, sanitation, and electronic sectors have driven extensive research into their biosynthesis [20][21][22]. Silver nanoparticles exhibit unique physical and chemical
PDF
Album
Review
Published 22 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • -effectiveness further support the use of biopolymers as nanocarriers for drug delivery. 4.1.1 Chitosan. Chitosan is the second most abundant natural polymer and one of the most extensively studied in biomedical sciences. Analysis of the studies presented in Table 3 confirms that it is among the most frequently
  • and other environments, has significant biomedical applications [148]. In this study, NPs were incorporated into biofilms for oral administration, demonstrating controlled release and effective protection of curcumin from external factors. The results discussed in this section highlight the potential
PDF
Album
Review
Published 10 Oct 2025

Multifunctional anionic nanoemulsion with linseed oil and lecithin: a preliminary approach for dry eye disease

  • Niédja Fittipaldi Vasconcelos,
  • Almerinda Agrelli,
  • Rayane Cristine Santos da Silva,
  • Carina Lucena Mendes-Marques,
  • Isabel Renata de Souza Arruda,
  • Priscilla Stela Santana de Oliveira,
  • Mércia Liane de Oliveira and
  • Giovanna Machado

Beilstein J. Nanotechnol. 2025, 16, 1711–1733, doi:10.3762/bjnano.16.120

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • -EGCG, as well as manganin, FeCl3, and the PD-L1 antibody. Hyaluronic acid is a non-sulfated glycosaminoglycan component of the extracellular matrix and has diverse biomedical applications [115]. It can be obtained through the fermentation of bacteria and yeasts, as well as animal sources, using
PDF
Album
Review
Published 22 Sep 2025

Nanotechnology-based approaches for the removal of microplastics from wastewater: a comprehensive review

  • Nayanathara O Sanjeev,
  • Manjunath Singanodi Vallabha and
  • Rebekah Rubidha Lisha Rabi

Beilstein J. Nanotechnol. 2025, 16, 1607–1632, doi:10.3762/bjnano.16.114

Graphical Abstract
  • techniques for the removal of MPs. Nanoparticle-based removal Advancements in characterization and synthesis techniques have enabled the manipulation of materials at the nanoscale, leading to innovations across various domains, including energy, electronics, and biomedical applications. Figure 5 depicts
PDF
Album
Review
Published 15 Sep 2025

Transient electronics for sustainability: Emerging technologies and future directions

  • Jae-Young Bae,
  • Myung-Kyun Choi and
  • Seung-Kyun Kang

Beilstein J. Nanotechnol. 2025, 16, 1545–1556, doi:10.3762/bjnano.16.109

Graphical Abstract
  • , making them ideal candidates for next-generation biomedical implants that are designed to function for a limited period, such as for temporary rehabilitation or short-term therapeutic purposes following surgery [6][7][8][10][14][21][22][23][24][25][26][27][28][29][30]. Clinically relevant implementations
  • constituent (Figure 1e) [27]. Crucially, the utility of transient systems is not confined to the biomedical domain. Their degradation mechanisms are equally applicable in broader environmental settings where biocompatibility constraints are relaxed. In contexts such as soil, compost, freshwater, or marine
  • development of advanced sensing platforms capable of detecting and responding to complex biological signals, alongside the integration of AI-based algorithms for real-time lifetime prediction and adaptive control. Beyond biomedical applications, such intelligent transient systems hold significant promise in
PDF
Album
Perspective
Published 04 Sep 2025

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as “click chemistry”, have been instrumental in tailoring the ligand layers of IONPs to produce
  • functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface. Herein, we use 3,4-dihydroxybenzoic acid-functionalized
  • erroneous conclusions about the efficacy of conjugation reactions, which can have detrimental impacts on the functionality and safety of IONPs in biomedical applications. Keywords: click chemistry; copper-catalyzed azide–alkyne cycloaddition; disulfide reduction; iron oxide nanoparticles; thiol–maleimide
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • , Istanbul, Turkey 10.3762/bjnano.16.105 Keywords: biomedical applications; drug delivery; nanocarriers; nanomaterials; nanomedicine; nanoparticles; polymeric nanoparticles; tissue regeneration; Medicine has rapidly advanced over the last few decades, and nanotechnology has played a significant role in
  • conditions such as cancer, neurological disorders, and infections. Quantum dots are a widely studied type of nanomaterial used in biomedical diagnostics. When these semiconductor particles are exposed to light, they strongly and stably emit fluorescence. Unlike regular dyes, quantum dots do not quickly fade
  • , nanomaterials are crucial for developing the latest generation of medical technologies that are smart and responsive to the body natural system [40]. In conclusion, the biomedical field now relies on nanotechnology, which leads to helpful, practical answers when traditional approaches do not work. It turns out
PDF
Editorial
Published 28 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Parylene-coated platinum nanowire electrodes for biomolecular sensing applications

  • Chao Liu,
  • Peker Milas,
  • Michael G. Spencer and
  • Birol Ozturk

Beilstein J. Nanotechnol. 2025, 16, 1392–1400, doi:10.3762/bjnano.16.101

Graphical Abstract
  • [22]. Due to these attributes, parylene-C, along with other variants of parylene, has been extensively utilized in the protection of electronic devices and surface modification of biomedical devices [23]. In this study, platinum was chosen as the DENA growth material due to its exceptional
PDF
Album
Full Research Paper
Published 20 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • against E. coli, S. aureus, and L. monocytogenes. In addition, improved biofilm disruption and reduced cytotoxicity were also observed. Bismuth complexes Bismuth and its derivatives have been widely employed in biomedical applications [130]. Among their most prominent applications is the treatment of
  • significant intrinsic cytotoxicity of Ir(III) complexes remains a limiting factor for biomedical applications; in this regard, the development of nanocarriers that can enhance the biocompatibility of these complexes is currently of much interest [139][140]. For example, the encapsulation of the Ir-based
PDF
Album
Review
Published 15 Aug 2025

Ferroptosis induction by engineered liposomes for enhanced tumor therapy

  • Alireza Ghasempour,
  • Mohammad Amin Tokallou,
  • Mohammad Reza Naderi Allaf,
  • Mohsen Moradi,
  • Hamideh Dehghan,
  • Mahsa Sedighi,
  • Mohammad-Ali Shahbazi and
  • Fahimeh Lavi Arab

Beilstein J. Nanotechnol. 2025, 16, 1325–1349, doi:10.3762/bjnano.16.97

Graphical Abstract
  • Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 10.3762/bjnano.16.97 Abstract
PDF
Album
Review
Published 14 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • University, Islamabad 45320, Pakistan Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Turkey Nanotechnology Research and Application Center (ERNAM), Erciyes University, Kayseri 38039, Turkey Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, Kayseri
  • inspired coatings derived from cell membranes with nanoparticle cores, these carriers become highly versatile vessels for encapsulating a wide array of therapeutic agents. As a result, they are being extensively harnessed for the precise delivery of drugs and genes, underpinning numerous biomedical
  • physicochemical and biological properties, and incredible potential of being therapeutic agent carriers for biomedical applications [10][11]. They are capable to deliver a range of therapeutics including genes, vaccines, biological macromolecules, hydrophobic/hydrophilic drugs, and proteins to certain organs such
PDF
Album
Review
Published 05 Aug 2025

Towards a quantitative theory for transmission X-ray microscopy

  • James G. McNally,
  • Christoph Pratsch,
  • Stephan Werner,
  • Stefan Rehbein,
  • Andrew Gibbs,
  • Jihao Wang,
  • Thomas Lunkenbein,
  • Peter Guttmann and
  • Gerd Schneider

Beilstein J. Nanotechnol. 2025, 16, 1113–1128, doi:10.3762/bjnano.16.82

Graphical Abstract
  • ; transmission X-ray microscope; Introduction Transmission X-ray microscopes (TXMs) operating in the soft and tender X-ray energy range are valuable tools for structural analysis in both biomedical and materials science research [1][2][3][4]. These microscopes yield images at a lateral resolution approaching 25
  • nm, from which quantitative data are often extracted. For example, in materials science applications, nanoscale spectromicroscopy [5][6][7][8] is used to examine a sample around its absorption edges, which provides insights into its electronic structure. In biomedical applications [9][10][11][12
  • model. This will then enable more quantitatively accurate measurements in both spectromicroscopy and biomedical imaging. Experimental The measured data [35] were obtained by allowing both 60 nm gold nanospheres and 270 nm gold shells from a colloidal gold suspension to dry onto holey carbon-coated gold
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2025

Fabrication of metal complex phthalocyanine and porphyrin nanoparticle aqueous colloids by pulsed laser fragmentation in liquid and their potential application to a photosensitizer for photodynamic therapy

  • Taisei Himeda,
  • Risako Kunitomi,
  • Ryosuke Nabeya,
  • Tamotsu Zako and
  • Tsuyoshi Asahi

Beilstein J. Nanotechnol. 2025, 16, 1088–1096, doi:10.3762/bjnano.16.80

Graphical Abstract
  • biological optical window (wavelengths from 650 to 1000 nm) and have recently attracted attention for applications in biomedical research such as photoacoustic imaging of tissues and PDT of tumors [2][3]. Porphyrins and Pcs are hydrophobic hydrocarbons that are insoluble in water. Hence, polymer composite
  • polypropylene oxide (PPO) arranged in a triblock structure. Here, the stability in phosphate-buffered saline (PBS, pH 7.2), which is used widely in pharmacology and biomedical experiments, was examined. We evaluated the phototoxicity of the fabricated nanoparticle colloids in vitro against PC12 cells (a cell
  • useful as a potential photosensitizer for PDT treatments in biomedical applications. Experimental Materials Cobalt(II) phthalocyanine (CoPc, 97%), nickel(II) phthalocyanine (NiPc, 85%), platinum octaethylporphyrin (PtOEP, 98%), and Pluronic® F-127 were purchased from Sigma-Aldrich. Chloroaluminum
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2025

Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts

  • Sevin Adiguzel,
  • Nilay Cicek,
  • Zehra Cobandede,
  • Feray B. Misirlioglu,
  • Hulya Yilmaz and
  • Mustafa Culha

Beilstein J. Nanotechnol. 2025, 16, 1068–1081, doi:10.3762/bjnano.16.78

Graphical Abstract
  • stimulate electrically excitable cells without requiring an external power source, making them highly attractive for biomedical applications such as treating cardiac arrhythmias and promoting bone regeneration [17][18]. Mechanical stimulation, notably ultrasound (US), can induce a piezoelectric response in
  • , making them particularly attractive for biomedical applications. [21][22]. Barium titanate (BaTiO3) is one of the most well-known piezoelectric nanomaterials (NMs), characterized by a cubic structure with four polymorphs which change depending on the temperature and a high dielectric constant. All its
  • properties due to its noncentrosymmetric crystal structure, making it a promising material for biomedical applications such as bone regeneration, where it can convert mechanical stimuli into bioelectrical signals. Additionally, the biocompatibility and ability of hBN to be integrated into composite scaffolds
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2025
Other Beilstein-Institut Open Science Activities