Search results

Search for "biomedical applications" in Full Text gives 175 result(s) in Beilstein Journal of Nanotechnology.

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • Abstract Colloidal systems consisting of monodomain superparamagnetic nanoparticles have been used in biomedical applications, such as the hyperthermia treatment for cancer. In this type of colloid, called a nanofluid, the nanoparticles tend to agglomeration. It has been shown experimentally that the
  • relaxation time; nanoparticle coating; numerical simulation; stochastic Langevin dynamics method; superparamagnetic nanoparticles; Introduction One of the most important biomedical applications of colloidal magnetic nanoparticle systems is magnetic hyperthermia applied as an alternative for cancer treatment
PDF
Album
Full Research Paper
Published 12 Aug 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • antimicrobial peptides (AMPs) are highly toxic [4][5]. Recently, research in the field of nanotechnology has focused on trying to find solutions for some of the most serious environmental issues, such as energy conversion, and for the optimization of biomedical applications. Their small size, shape variability
  • , surface functionalities, high surface-to-volume ratio and tunable physiochemical properties are unique characteristics that make nanomaterials promising for biomedical applications [6][7]. Multifunctional nanomaterials have been developed to decontaminate surfaces infested with infectious pathogens
  • (NCs) have been considered as an alternative since they contain a small amount of Ag in a highly biocompatible material. Along these lines, TiO2 NPs have been used worldwide in biomedical applications due to their biocompatibility and cost-effectiveness [15]. Moreover, TiO2 NPs are inorganic materials
PDF
Album
Full Research Paper
Published 29 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • -patient absorption and response. This review addresses potential applications of SPIONs in vitro (formulations), ex vivo (in biological cells and tissues) and in vivo (preclinical animal models), as well as potential biomedical applications in the context of drug targeting, disease treatment and
  • a drug delivery system in sheep joints. The authors found that PVA-coated SPIONs in the presence of an external magnet accumulated at the joint and remained there until at least the fifth day of treatment [83]. Many coatings have been tested for biomedical applications. PVA is one of the most
  • readily detected. Figure 3 gives a schematic overview of how the physical and chemical characteristics of SPIONs influence biological response and biomedical applications. Endocytosis, exocytosis, retention and clearance There are a number of possible cell entry mechanisms for nanoparticles, such as
PDF
Album
Review
Published 27 Jul 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • ability to disintegrate at physiological pH makes them more versatile for biomedical applications. Crosslinking and covalent interactions Unlike electrostatic and hydrogen bonding interactions, the covalently linked multilayers provide a more robust way to manipulate permeability, stability and mechanical
PDF
Album
Review
Published 27 Mar 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • ], environmental remediation with sensitive pollutant detection [3][4], and biological and biomedical applications [5][6] is a crucial matter. In addition to the intrinsic functionality of bulk materials, control of their internal structure on the nanometer-scale is realized to be increasingly important to obtain
PDF
Album
Editorial
Published 12 Mar 2020

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • , handling, and simple structure, plant viruses are attractive for some biomedical applications. Plant bromoviruses, such as the brome mosaic virus (BMV), are viral bionanoparticles that have been proposed as platforms for drug delivery in different therapies, and as diagnostic imaging agents in cancer [18
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • ]. Several studies have explored the potential biomedical applications of PVI and its derivatives. Pullulan-grafted poly(1-vinylimidazole) was found complex anionic citrate and tripolyphosphate effectively in acidic medium via the imidazole moiety [8]. The catalytic properties of poly(1-vinylimidazole) due
PDF
Album
Full Research Paper
Published 17 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • biomedical field [8][9]. Hence, natural calcium phosphate from marine organisms plays a major role in recent developments of Hap for use in biomedical applications. Cuttlefish (Sepia officinalis) is an important marine food that is available for human consumption, and tons of cuttlefish bones are produced as
  • waste material every day by the marine food industry across the world, resulting in environmental contamination [10]. In ancient times, cuttlefish bone powder was used as biomedicine in China and India for oral health and is proven to be completely suitable for biomedical applications [11]. Further, the
  • [28], and B-type, where the substitution takes place at phosphate vibrational sites [29]. Hence, the band at 1456 cm−1 indicates the occupancy of B-type carbonates and the carbonated n-Hap are highly beneficial in biomedical applications, especially in hard tissue repair [30][31]. Thermogravimetric
PDF
Album
Full Research Paper
Published 04 Feb 2020

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery

  • Dávid Juriga,
  • Evelin Sipos,
  • Orsolya Hegedűs,
  • Gábor Varga,
  • Miklós Zrínyi,
  • Krisztina S. Nagy and
  • Angéla Jedlovszky-Hajdú

Beilstein J. Nanotechnol. 2019, 10, 2579–2593, doi:10.3762/bjnano.10.249

Graphical Abstract
  • ]. Moreover, our research group demonstrated previously that hydrogels based on the anionic poly(aspartic acid) (PASP) are also well-suited for tissue engineering purposes [25]. Another field of potential biomedical applications of poly(amino acid)s is drug delivery. Poly(amino acid)-based microcarriers can
  • degradation properties of the gels containing LYS and CYS at different ratios were investigated since these attributes are crucial for biomedical applications. The swelling degree was determined at different pH values and under redox conditions. For biocompatibility studies, cell viability tests were carried
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • commonly used labels is fluorescein [37][38][39][40][41][42]. In biomedical applications, fluorescein has several advantages over other dyes such as nontoxicity, high water solubility, and pH responsivity. Fluorescein demonstrates a high fluorescence efficiency at basic pH values but becomes nonfluorescent
  • good dispersibility in water and their fluorescent properties make them excellent candidates for biomedical applications. pH-Responsive fluorescent properties of P(AA-co-FA)-functionalized BNNTs Depending on pH, fluorescein can exist as a cation, monoanion, dianion, amphoion, neutral quinoid structure
  • )-functionalized BNNTs is excellent and they can potentially be used in biomedical applications. We plan to continue to explore this new hybrid in our future studies not only as a pH-switchable label but also as “smart” surfaces and nanocarriers. Conclusion pH-Switchable, fluorescent, hybrid, water-dispersed
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • multifunctional biomedical applications. The crystalline phase, morphology, magnetization, and coordination environment of various spinel species were characterized using X-ray diffraction (XRD), BET surface area measurements, vibrating sample magnetometry (VSM), diffuse reflectance UV–vis spectroscopy (DR UV–vis
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • ]. In addition, the high surface area of spherical self-assembled structures can confer glycopolymers a high affinity towards lectins [18]. Among different synthetic macromolecules used in biomedical applications, copolymers based on poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) are found
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • modulated with a magnetic field giving increased sensitivity. As bioimaging probes, they are versatile, cost-effective and easily functionalized, in addition to being easy to coat with silica for biomedical applications. Background-free imaging, both in vivo and in vitro, is achieved by applying an
  • mapping. Wide-field magnetometry with NVs allows a wide field-of-view, albeit sometimes with reduced resolution. It has been applied successfully in several fields, mostly in biomedical applications. The pioneering works in NV magnetometry are concerned with proving the underlying principles of nanoscale
  • diamond is currently appearing as a platform that is excellently suited for probing condensed matter systems. In addition to room temperature operation for biomedical applications, it can also be used at cryogenic temperatures and has a magnetic field measurement dynamic range from direct current to AC
PDF
Album
Review
Published 04 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • ][71], biological investigation [72][73][74][75], and biomedical applications [76][77][78]. As compared with simple self-assembly processes, nanoarchitectonics is advantageous for architecting hierarchical structures and interfacing between materials and devices. In addition, the fabrication of sensor
PDF
Album
Review
Published 16 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • the surface functionalities allows for the use of such particles in biomedical applications. The Au-CPMV particles reported here exhibit excellent stability over at least almost a year. No visible aggregation nor changes in particles size was observed in samples stored at 4 °C. Their surface can be
PDF
Album
Full Research Paper
Published 07 Oct 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • electrical conductivity and porosity at the same time. Fullerenes (C60) [25] have found numerous applications in different fields, ranging from molecular electronics and nanotechnology to biomedical applications, due to their exceptional electrochemical and photophysical properties [26][27]. In particular
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • multifunctional vehicles for biomedical applications. EGFRvIII expression in U87MG-EGFRvIII cells Before assessing the uptake of the nanoprobes by different cells, EGFRvIII expression in U87MG-EGFRvIII cells was initially validated. As shown in Figure 3a, an obviously higher fluorescence intensity was observed in
PDF
Album
Full Research Paper
Published 11 Sep 2019

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  • Elvira Rozhina,
  • Ilnur Ishmukhametov,
  • Svetlana Batasheva,
  • Farida Akhatova and
  • Rawil Fakhrullin

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

Graphical Abstract
  • such as boron nitride or imogolite nanotubes, which are also considered as safe materials for living organisms [33]. Recently, water-dispersed thermo-responsive boron nitride nanotubes were obtained by their functionalisation with poly(N-isopropylacrylamide), which can widen their biomedical
  • applications [34]. After fabrication, the cells were bleached to produce hollow cell-shaped imprints. These imprints, in turn, were utilised to recognise HeLa cells in suspension. Importantly, the silica/halloysite imprints based on human cells were selective and did not interact with microbial cells of
PDF
Album
Letter
Published 04 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • -chemical properties. Silver nanoparticles (AgNPs) are extensively used in antimicrobial coatings for medical devices, wound dressing, cosmetic products and food packaging due to their antimicrobial, antiangiogenic and anti-inflammatory properties [1][2][3][4][5]. Biomedical applications of gold
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • ], environmental protection [118][119], catalysts [120][121], biology [122][123][124], and biomedical applications [125][126]. For example, the following recent research works on low-dimensional materials have been carried out using the nanoarchitectonics concept: Hasegawa and co-workers used atom-manipulation
PDF
Album
Review
Published 30 Jul 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • demagnetized) [5][6]. Magnetic interactions (e.g., exchange and dipolar interactions) have a strong effect on the magnetic behavior of a NP system (e.g., coercivity and blocking temperature) [7][8] and its potential for different applications. For example, there may be unfavorable effects in biomedical
  • applications, such as aggregation of nanoparticles in different parts of the body [9]. Hence, the study of this kind of interactions is of particular importance, both from a practical and a fundamental point of view. Recently, Muscas et al. [1] studied the magnetic behavior of mixed cobalt–nickel and pure
PDF
Album
Full Research Paper
Published 03 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • implications in various fields of nanotechnology such as biomedicine, magnetic data storage and sensors [1][2][3][4][5][6]. Concerning the biomedical applications, the magnetic relaxation of nanoparticles is of key interest in magnetic resonance imaging (through the influence of the relaxation time of the
  • should be taken into account in hyperthermia biomedical applications, which has also been reported in other previous studies [34][35]. Theoretical investigation of the relaxation time by micromagnetic simulations The dynamic magnetic behavior of parallelepiped nanoparticles with specific configurations
PDF
Album
Full Research Paper
Published 24 Jun 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • [12]. Due to its biocompatibility, it has been investigated in several biomedical applications, e.g., tissue engineering, ophthalmology, and drug delivery. Chitosan modification with phenolic compounds leads to the enhancement of already existing antioxidant properties [13]. The antioxidant properties
  • assays indicated the necessity of using additional methods for the examination of the antioxidant properties. γ-Fe2O3 nanoparticles The advantages of iron oxides in biomedical applications include biocompatibility, excellent magnetic properties, and the possibility to modify the surface with reactive
  • magnetism of nanoparticles is the particle size. γ-Fe2O3 nanoparticles with sizes below the single-domain critical diameter are superparamagnetic, whereas larger particles are ferrimagnetic [26][27]. Superparamagnetism is an important feature of magnetic nanoparticles intended for biomedical applications
PDF
Album
Full Research Paper
Published 20 May 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • . Considering that the size of nano- and microaggregates greatly influences their degree of toxicity, and consequently their impact on human health and the environment, the conditions under which aggregation occurs are of interest for environmental but also for biomedical applications [13][14]. The stability of
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019
Graphical Abstract
  • suitability of plasmonic SERS labels for ultrasensitive analytical and biomedical applications is evident. Keywords: discrete dipole approximation (DDA); gold nanoparticles (AuNPs); nanotags; surface-enhanced Raman scattering (SERS); surface plasmon resonance (SPR); Introduction In surface-enhanced Raman
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019
Other Beilstein-Institut Open Science Activities