Search results

Search for "bottom-up" in Full Text gives 127 result(s) in Beilstein Journal of Nanotechnology.

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • beam lithography, stereolithography, direct laser writing, and block co-polymer micellar nanolithography are applied. Based on the fabrication approach, fabrication techniques can be divided whether they follow a top-down approach or a bottom-up approach. In the first approach, an already existing bulk
PDF
Album
Review
Published 08 Nov 2016

Filled and empty states of Zn-TPP films deposited on Fe(001)-p(1×1)O

  • Gianlorenzo Bussetti,
  • Alberto Calloni,
  • Rossella Yivlialin,
  • Andrea Picone,
  • Federico Bottegoni and
  • Marco Finazzi

Beilstein J. Nanotechnol. 2016, 7, 1527–1531, doi:10.3762/bjnano.7.146

Graphical Abstract
  • and the interface dipole was determined and compared with data available in the literature. Keywords: inverse photoemission; metal-oxide film; OMBE; porphyrin; Introduction Thin organic films can be realized by depositing single molecules on surfaces, which is the first step for the so-called bottom
  • -up assembly of devices based on organic compounds. The molecule–surface interaction, however, can alter the electronic properties of the organic compound and/or the functionality of the electronic device. This effect is enhanced in molecules showing catalytic activity when the catalytic sites
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • -assisted approaches including photo-activation [12][13][14][15][16][17][18][19][20][21] and photo-recovery [22][23] have been shown effective to enable gas sensing at room temperature. The sensing material in a semiconducting metal oxide sensor is commonly synthesized by a bottom-up approach, such as
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

  • Zhicheng Liu,
  • Lu Bai,
  • Guizhe Zhao and
  • Yaqing Liu

Beilstein J. Nanotechnol. 2016, 7, 1028–1032, doi:10.3762/bjnano.7.95

Graphical Abstract
  • -down and bottom-up techniques, layer-by-layer (LbL) assembly is a facile and cost-efficient way for the controllable deposition of numerous components [6][7][8]. Multilayer nanostructures with complex morphologies and functions could be prepared conveniently through the LbL assembly process, which is
PDF
Album
Supp Info
Letter
Published 15 Jul 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • also environmentally friendly processes. Very popular preparation methods of silver and gold nanostructures are based on bottom-up processes, where nanoparticles, are built from smaller structures such as metal ions. Sodium citrate and sodium borohydride are very common reducing chemicals for metal
PDF
Album
Full Research Paper
Published 09 Jun 2016

Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

  • Gaber Hashem Gaber Ahmed,
  • Rosana Badía Laíño,
  • Josefa Angela García Calzón and
  • Marta Elena Díaz García

Beilstein J. Nanotechnol. 2016, 7, 758–766, doi:10.3762/bjnano.7.67

Graphical Abstract
  • straightforwardly synthetized via two approaches: a) from fine carbon structures (such as multi-wall nanotubes and graphene) by top-down methods and b) by bottom-up approaches from chemical precursors (such as glucose, citrate, ethylenediaminetetraacetic acid) or from natural products (usually vegetables). Recently
  • , using the bottom-up approach, we prepared C-dots based on the thermal carbonization of a mixture of nitrogen-containing organic compounds, ethyleneglycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and Tris, thus providing them not only with surface hydroxy but also with amino groups
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • -up techniques based on the self-assembly of nanoscale spheres [2][11][12] allow precise control over diameter and distance of the antidots. In the present work, we make use of bottom-up nanosphere lithography in combination with reactive ion etching resulting in hexagonally arranged, non-close packed
  • comprehensive contribution. We start the discussion with a technical section on the achievements and limitations of magnetic antidot arrays by bottom-up nanosphere lithography and specially developed characterisation and simulation tools. We show that the development of a proper spatially resolving magnetometry
  • using nanosphere lithography and discuss important aspects of the magnetic characterisation and simulation that are not common knowledge, i.e., FORC using a MOKE microscope and the micromagnetic simulations applied to an antidot lattice. Preparation of antidot lattices Using a bottom-up approach, the
PDF
Album
Full Research Paper
Published 24 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • , TMV-like particles (TLPs) of altered length, or non-linear more complex structures up to branched architectures may be generated [54][55][56][57][58][59]. Furthermore, it is possible to immobilize one end of the RNA template prior to its encapsidation by CP, resulting in TLP growth bottom-up at sites
  • the fabrication of microfluidic devices by master-replication techniques, was already shown to allow a site-specific bottom-up integration of TMV carrier sticks [60]. This was achieved via isothiocyanate- (ITC-) based coupling of single-stranded (ss) DNA anchors, subsequent trapping of the 3'-ends of
  • nm deep holes. Arrays of TMV nanorods established by bottom-up or top-down approaches: Site-selectively arranged carriers for uses in biosensor devices. A: Spatially selective bottom-up growth of terminally immobilized TMV-like particles on aldehyde-modified areas of wafers, fashioned with assembly
PDF
Album
Review
Published 25 Apr 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
PDF
Album
Review
Published 08 Mar 2016

Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

  • Tuan Anh Pham,
  • Andreas Schreiber,
  • Elena V. Sturm (née Rosseeva),
  • Stefan Schiller and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2016, 7, 351–363, doi:10.3762/bjnano.7.32

Graphical Abstract
  • ; nanoparticles; self-assembly; SERS; Introduction Self-assembly plays a pivotal role in bottom-up strategies for the synthesis of advanced nanostructures [1]. The resulting assemblies can be one-, two- or three-dimensional. One-dimensional nanostructures show particularly great promise due to their large
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2016

3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

  • Eduardo Guzmán,
  • Armando Maestro,
  • Sara Llamas,
  • Jesús Álvarez-Rodríguez,
  • Francisco Ortega,
  • Ángel Maroto-Valiente and
  • Ramón G. Rubio

Beilstein J. Nanotechnol. 2016, 7, 197–208, doi:10.3762/bjnano.7.18

Graphical Abstract
  • application in several fields, including optics, electronics, coatings and biomaterials (drug delivery and tissue engineering). In order to create the aforementioned materials, the development of new bottom-up techniques, which allow one to control the properties and structure of the materials at the sub
PDF
Album
Full Research Paper
Published 05 Feb 2016

Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

  • Rasmus Bjerregaard Christensen,
  • Jing-Tao Lü,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2016, 7, 68–74, doi:10.3762/bjnano.7.8

Graphical Abstract
  • transverse ribbon direction. This opens the possibilities of realizing various electronic devices, especially field-effect transistors, using graphene nanoribbons. Atomically precise ribbons [2], as well as more advanced ribbon-based structures [3][4], have been fabricated “bottom-up” on metal surfaces. The
PDF
Album
Letter
Published 20 Jan 2016

A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

  • Daniela Lehr,
  • Markus R. Wagner,
  • Johanna Flock,
  • Julian S. Reparaz,
  • Clivia M. Sotomayor Torres,
  • Alexander Klaiber,
  • Thomas Dekorsy and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2015, 6, 2161–2172, doi:10.3762/bjnano.6.222

Graphical Abstract
  • require quite demanding, high-vacuum equipment, correct process parameters are often difficult to find, and nanostructures different from thin films cannot be obtained. For the preparation of semiconductor nanomaterials such as colloidal particles, quantum dots or porous materials bottom-up synthesis
  • routes in the liquid phase are commonly applied [35][36][37]. Whereas, bottom-up techniques such as the sol–gel process for metal oxides [38][39] work perfectly for the generation of an entire zoo of nanostructures, to realize at the same time intentional doping of those nanostructures is extremely
  • semiconductors and the potential of bottom-up methods enabling control over materials morphology. The mentioned problem could be solved, if one uses special molecules for materials synthesis. So-called molecular single-source precursors (MSSPs) contain, on the molecular level, all required elements for the final
PDF
Album
Supp Info
Correction
Full Research Paper
Published 18 Nov 2015

Selective porous gates made from colloidal silica nanoparticles

  • Roberto Nisticò,
  • Paola Avetta,
  • Paola Calza,
  • Debora Fabbri,
  • Giuliana Magnacca and
  • Dominique Scalarone

Beilstein J. Nanotechnol. 2015, 6, 2105–2112, doi:10.3762/bjnano.6.215

Graphical Abstract
  • hexagonally ordered pores were also employed as substrate for MCM-48 silica films, giving promising results [4][23][24]. The sol–gel polymerization process is a key procedure for the bottom-up synthesis of nano- and mesoporous silica films and in the literature there are several reviews focusing on this field
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2015

Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

  • Nina J. Blumenstein,
  • Jonathan Berson,
  • Stefan Walheim,
  • Petia Atanasova,
  • Johannes Baier,
  • Joachim Bill and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1763–1768, doi:10.3762/bjnano.6.180

Graphical Abstract
  • role in nature – and more and more in technology [1][2]. Increasingly complex structures can evolve from using principles of self-organization in a bottom-up approach rather than from lithography-based top-down approaches. The key issue for intelligent self-assembly of complex structures is the design
PDF
Album
Full Research Paper
Published 20 Aug 2015

How decision analysis can further nanoinformatics

  • Matthew E. Bates,
  • Sabrina Larkin,
  • Jeffrey M. Keisler and
  • Igor Linkov

Beilstein J. Nanotechnol. 2015, 6, 1594–1600, doi:10.3762/bjnano.6.162

Graphical Abstract
  • regulatory agencies to process and use the data. The vision of nanoinformatics is to address this problem by identifying the information necessary to support specific decisions (a top-down approach) and collecting and visualizing these relevant data (a bottom-up approach). Current nanoinformatics efforts
  • , storing, sharing, analyzing, modeling, and applying that information” [3]. This definition implies the integration of top-down methods for assessing scientific community needs with bottom-up methods for data collection and management [4][5]. Such integration will enhance the reproducibility and
  • according to their properties and environmental and health implications, including their compliance scores [1]. These efforts all focus on developing resources that satisfy the bottom-up part of the nanoinformatics definition presented above. The top-down part, in which the appropriateness of information to
PDF
Commentary
Published 22 Jul 2015

DNA–melamine hybrid molecules: from self-assembly to nanostructures

  • Rina Kumari,
  • Shib Shankar Banerjee,
  • Anil K. Bhowmick and
  • Prolay Das

Beilstein J. Nanotechnol. 2015, 6, 1432–1438, doi:10.3762/bjnano.6.148

Graphical Abstract
  • molecules can result in unique DNA-based nanostructures for application in molecular and cellular biophysics, as biomimetic systems, in energy transfer and photonics, and in diagnostics and therapeutics [18][19][20][21]. Moreover, as a bottom-up technique, such a methodology can contribute to molecular
PDF
Album
Supp Info
Letter
Published 30 Jun 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • carbon content versus electron dose. Interestingly cross-sectional TEM studies revealed that the process occurred bottom-up where the purification rate is fastest at the end of the electron-beam range in the PtCx deposit and eventually propagates to the surface. Our previous electron-stimulated
PDF
Album
Full Research Paper
Published 08 Apr 2015

Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

  • Shawn Sanctis,
  • Rudolf C. Hoffmann,
  • Sabine Eiben and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2015, 6, 785–791, doi:10.3762/bjnano.6.81

Graphical Abstract
  • and 2D biological molecules as structure-directing agents, enabling a "bottom-up" approach for building these complex nanoarchitectures. Among the several biological templates, the tobacco mosaic virus (TMV) has shown great potential to function as a robust biological template for the deposition of a
PDF
Album
Supp Info
Video
Full Research Paper
Published 20 Mar 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • magnetic circular dichroism (XMCD); Introduction In the last fifteen years, bottom-up approaches have provided promising routes for creating a wide range of nanostructures with new magnetic, electronic, photonic or catalytic properties. Such approaches are based on growth phenomena after atoms and
  • understanding of the physics of the magnetic state. Although less developed, the fabrication of nanostructures of true atomic dimension using a bottom-up approach can result in a deeper insight into the fundamental understanding of their intrinsic properties. For instance, the study of surface-supported two
PDF
Album
Full Research Paper
Published 19 Mar 2015

A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons

  • Ping Du,
  • David Bléger,
  • Fabrice Charra,
  • Vincent Bouchiat,
  • David Kreher,
  • Fabrice Mathevet and
  • André-Jean Attias

Beilstein J. Nanotechnol. 2015, 6, 632–639, doi:10.3762/bjnano.6.64

Graphical Abstract
  • -assembled monolayers at surfaces represent a major challenge for potential applications in various fields of nanotechnology [9][10]. Among the various manufacturing routes, bottom-up approaches [11] are particularly promising. They exploit supramolecular chemistry on surfaces to generate specific 2D
PDF
Album
Review
Published 03 Mar 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • techniques can be used to produce sp carbon wires in several forms, mainly by bottom-up approaches [5]. Physical techniques are mostly based on the rapid quenching of a carbon vapor in various environments. Supersonic carbon cluster sources based on the arc discharge between graphite electrodes (i.e., the
PDF
Album
Review
Published 17 Feb 2015

Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

  • Zhi Chen,
  • Svetlana Klyatskaya,
  • José I. Urgel,
  • David Écija,
  • Olaf Fuhr,
  • Willi Auwärter,
  • Johannes V. Barth and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 327–335, doi:10.3762/bjnano.6.31

Graphical Abstract
  • years, significant strides have been made in the understanding and the application of nanofabrication from the "bottom-up" perspective [13][14][15][16][17]. The tailored design, controlled formation, and in-depth characterization of self-assembled, molecular and periodic heterostructures (ranging over
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • can be mainly divided into top down and bottom up processes. Top down processes consist of physical processes where a solid is broken down into nanoparticles as it appears for example during laser ablation of nanoparticles from a macroscopic piece of metal [7][8]. Nanoparticles made by a physical
  • process such as laser ablation have the advantage of being “chemically clean” with no impurities on their surfaces introduced by the chemical preparation process. In the bottom up approach, nanoparticles are created from even smaller structures such as silver ions, which are the outcome of a chemical
  • process. The most popular process among the bottom up methods might be the preparation of silver and gold nanoparticles in aqueous solution by the reduction of silver and gold salts using sodium citrate or sodium borohydride as reducing agent [9]. Recently it has been identified that also plant extracts
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Functionalization of α-synuclein fibrils

  • Simona Povilonienė,
  • Vida Časaitė,
  • Virginijus Bukauskas,
  • Arūnas Šetkus,
  • Juozas Staniulis and
  • Rolandas Meškys

Beilstein J. Nanotechnol. 2015, 6, 124–133, doi:10.3762/bjnano.6.12

Graphical Abstract
  • human neurodegenerative diseases and microbial physiological processes [4]. The principles of self-assembly of amyloidogenic elements together with their observed polymorphism have been found to be beneficial for the design and development of novel nanostructures and nanomaterials from the bottom up [5
PDF
Album
Full Research Paper
Published 12 Jan 2015
Other Beilstein-Institut Open Science Activities