Search results

Search for "cell membrane" in Full Text gives 114 result(s) in Beilstein Journal of Nanotechnology.

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • images was stained, but only the squared area was irradiated. Only dead cells are dyed by trypan blue, and in the images they appear gray and blurry due to the collapse of the cell membrane and the penetration of the dye. The images show cell death only in the squared area, for only the cells incubated
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • concentrations, as has been described above. The combination of subcellular targeting agents that allow for endosomal scape and regulate the intracellular trafficking and a targeting agent directed to cell membrane receptors is a promising strategy for increasing the efficacy of treatments. The presence of both
  • vectorization for enhancing the cell growth inhibition. In these cases, the goal is to drive the payload to the nucleus after selective internalization in the cytoplasm. Nuclear delivery with the HIV trans-activator of transcription (TAT) peptoid in combination with the vasculature and tumor cell membrane
  • cationic groups as mitochondrial targeting agent is the triphenylphosphonium cation (TTP) [87]. The vectorization agents are anchored separately on each of the hemispheres of the nanocarrier through an asymmetrisation process. One hemisphere is functionalized with folic acid as cell membrane targeting
PDF
Album
Review
Published 14 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • deactivate bacteria by damaging its cell membrane and DNA [50]. It is known that electrostatic adsorbent–adsorbate interactions do occur in solution at pH values either above or below the pHpzc of the adsorbent [51]. Based on the latter, it is believed that the composite adsorbent material in this study does
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • doxorubicin (Dox), which is considered as one of the most potent FDA-approved antitumor drugs [1]. Dox realizes its therapeutic effect via the inhibition of DNA topoisomerase II and the generation of free radicals, leading to cell membrane damage, inhibition of macromolecule production, and ultimately
  • -9000 fluorescence microscope. The live/dead kit determined the cell viability based on the cell membrane integrity. Living cells were stained by calcein AM, which emits green fluorescence (517 nm) after excitation by blue light (494 nm), whereas dead cells were stained by EthD-1, which emits red
PDF
Album
Full Research Paper
Published 25 Sep 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • excitation. Likewise, EB, having an excitation/emission of 524/605 nm, provides an orange fluorescence upon intercalculation with dsDNA and can permeate into membrane-compromised cells only. The degree of EB staining in the cells dictates the proportion of the cell membrane compromised. During the early
  • transformational aspect of apoptosis. Membrane blebbing in cell membrane is evidence that the cell is undergoing apoptosis along with cytoplasmic contraction and DNA fragmentation. To visualize the morphological changes occurring during membrane blebbing, we conducted FE-SEM microscopy to obtain high-resolution
  • -myosin cytoskeleton to the plasma membrane, eventually leads to cell contraction and bleb formation on the cell membrane [43]. In our study, a well-structured cytoskeleton was visualised in an untreated control of both A549 and HCT-15 (Figure 6) cells, showing healthy cells. The active attachment on the
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • the innate immune system [64]. T-cells come from the thymus and use a cell-mediated immune approach by lysing (destroying the cell membrane of) infected cells or causing apoptosis (induced/programmed cell death) in infected cells [25]. B-cells originate in bone and create the humoral path of adaptive
PDF
Album
Review
Published 19 Mar 2018

Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique

  • Vladimir N. Popok,
  • Cesarino M. Jeppesen,
  • Peter Fojan,
  • Anna Kuzminova,
  • Jan Hanuš and
  • Ondřej Kylián

Beilstein J. Nanotechnol. 2018, 9, 861–869, doi:10.3762/bjnano.9.80

Graphical Abstract
  • NPs preventing a fast contact with E.coli. Another explanation is in possibility of membrane repair and recovery of the damaged bacteria at an earlier stage. It was shown in [16][17] that ROS attack the outer cell membrane and first cause its decomposition, while bacterial dysfunction and death only
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • domains have been fabricated by Stupp and co-workers, based on the self-assembly of cholesteryl oligo(L-lactic acid) [109]. In this system, the incorporation of the cholesteryl moiety and the short lactic acid chain enables cell membrane adherence and biodegradability, respectively. Thus, the layer-by
PDF
Album
Review
Published 18 Jan 2018

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • vicinity of the cell membrane events of colocalizing AuNPs and FeOxNPs were also found (Figure 4). Quantification of particle uptake The quantification of the intracellular fraction of elemental Au or Fe (Figure 5, top) by ICP-OES revealed a continuous uptake of both particle types in all exposure modes
  • cell membrane were observed (Figure 9). In the single-exposure experiments, the average fluorescence in the vicinity of the cell, set at the 20% surrounding rim outside the cell (Figure S18, Supporting Information File 1), was significantly higher (p < 0.05) than the average background values extracted
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • attractive for binding to the cell membrane than positively charged nanoparticles, which can be internalized more rapidly [44]. Positively charged nanoparticles have been reported to improve the efficacy of imaging, gene transfer and drug delivery. However, at the same time, negative effects like impaired
  • dead at the end of the experiment. In at least one or two of the cases of cell death, an expelled cytoplast can be seen exiting the cell membrane. This indicates uncontrolled cell death and rupture. The remaining living cells have an elongated shape due to the accumulated NDs which mechanically
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • cells can be clearly seen in Figure 8. Anticancer activity increases with increasing surface charge of nanoparticles. It was known that the cell membrane is negatively charged so that cationic nanoparticles enhance interaction with the biological membrane. Positively charged nanoparticles can bind with
  • negatively charged molecules (e.g., sialic acid, cholesterol, phospholipid) on cell membrane easier than anionic nanoparticles [26][52]. In addition, the surface charge of nanoparticles play an important role on cellular uptake and subcellular localization [53][54]. Another reason for the cell viability
  • positive charge can improve drug loading capacity, slow down drug release and improve cellular interaction due to the negative charge of the cell membrane. Furthermore, unloaded or loaded nanoparticle cytotoxic effects were demonstrated with MTT assay in this study. In the light of the results of this
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • effect on RG2 cells. As a result, CS-coated nanoparticle formulations were found to be significantly more effective against glioma cells than nanoparticles that have negative surface charge (p < 0.05). Cationic nanoparticles may interact and pass the cell membrane more easily due to their opposite
PDF
Album
Full Research Paper
Published 12 Jul 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • sizes. Part of this effect could be due to an increased packing of cells, manifesting itself as a decreased surface area per cell between 4 and 21 days, and thus a resulting lower association to the cell membrane and consequent uptake. However, it is difficult to imagine that this could amount to a
  • , results from flow cytometry exhibit a substantial signal which, in isolation, could be misinterpreted for nanoparticle accumulation, but which fluorescence and electron microscopy imaging show is (predominantly) due to nanoparticle adsorption to the outer cell membrane. Nevertheless, imaging shows some
  • . Alternatively, it could be connected to the presence of a rich extracellular matrix, which may increase nanoparticle association to the apical side of the barrier, but also impede further interactions with the actual cell membrane, thereby lowering nanoparticle uptake. We note that our results are qualitative
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Evaluation of quantum dot conjugated antibodies for immunofluorescent labelling of cellular targets

  • Jennifer E. Francis,
  • David Mason and
  • Raphaël Lévy

Beilstein J. Nanotechnol. 2017, 8, 1238–1249, doi:10.3762/bjnano.8.125

Graphical Abstract
  • fixation of cells, followed by permeabilisation with a detergent. This creates pores in the cell membrane, allowing primary and secondary antibodies to gain access to the protein of interest. Qdots are an attractive alternative to traditional fluorescent dyes for ICC because they are much brighter and more
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2017

Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification

  • Mohamed Hassoun,
  • Iwan W.Schie,
  • Tatiana Tolstik,
  • Sarmiza E. Stanca,
  • Christoph Krafft and
  • Juergen Popp

Beilstein J. Nanotechnol. 2017, 8, 1183–1190, doi:10.3762/bjnano.8.120

Graphical Abstract
  • demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation
  • polydispersity in size. (c) SEM image of intact cells mixed with nanoparticles showing the distribution of nanoparticles on the surface of the cell. (d) SEM image of cell lysate mixed with nanoparticles showing released cellular biomolecules with nanoparticles after disruption of cell membrane. Preprocessed mean
PDF
Album
Full Research Paper
Published 01 Jun 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • nanotubes (SWNTs) are currently intensely studied as promising drug delivery systems for cancer therapies due to such their properties as: the ability to penetrate cell membrane [16][17], high drug capacity [8][9], selective retention in the tumour [21], reduced toxic effects of the drug [5][20]. The major
PDF
Album
Full Research Paper
Published 16 Mar 2017

Physics, chemistry and biology of functional nanostructures III

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 590–591, doi:10.3762/bjnano.8.63

Graphical Abstract
  • structures into various materials made it possible to solve long-standing problems. Examples presented in this Thematic Series are: the problem of treatment of multidrug-resistant tuberculosis, which can be resolved using the invented nano-encapsulated medicines penetrating through the cell membrane of the
PDF
Editorial
Published 09 Mar 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was
  • different for dissolved HTRA1 and HTRA1-loaded nanoparticles. Keywords: calcium phosphate; endocytosis; nanoparticles; proteins; Introduction Many receptors for drugs or proteins are located inside cells [1][2]. However, because many biomolecules are not able to penetrate the cell membrane on their own, a
  • suitable carrier is required [3][4]. Nanoparticles are readily taken up by cells via endocytosis and are easily able to deliver their cargo into cells across the cell membrane [5][6][7]. Calcium phosphate nanoparticles have demonstrated to be very efficient to transport (bio)molecules into cells [8][9
PDF
Album
Full Research Paper
Published 07 Feb 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • to that, SiNPs seem to have the potential of disturbing Ca2+ homeostasis [27]. The aim of our study is to expand the window of nanoparticle–cell membrane ultrastructural investigations to particle sizes well below 25 nm in diameter. Little electron microscopic information exists in this size regime
  • adsorption of proteins to the silica surface followed by some kind of flocculation process. The hydrodynamic radius of these agglomerates was in the order of 100 to 300 nm (Table 2, Figure 2A). Morphological examination of the NP–cell membrane interaction This directly raises the question, if the
  • agglomeration of NPs plays a crucial role in their uptake into cells. Accordingly, one has to examine the adsorption of the NP agglomerates on the cell membrane. Figure 3 shows a scanning electron microscope (SEM) micrograph of a HeLa cell exposed to 100 µg·mL−1 SiNP-22 for 15 min prior to fixation. It is worth
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza A virus in cell culture

  • Asya S. Levina,
  • Marina N. Repkova,
  • Elena V. Bessudnova,
  • Ekaterina I. Filippova,
  • Natalia A. Mazurkova and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2016, 7, 1166–1173, doi:10.3762/bjnano.7.108

Graphical Abstract
  • inhibit the reproduction of IAV in cell culture. TiO2 nanoparticles (of ≈5 nm in diameter) are known to penetrate through cell membrane [23]. It was clearly demonstrated in our previous work [17][18] that they are good vehicles to transport DNA fragments into cells. There are literature data that show
PDF
Album
Full Research Paper
Published 10 Aug 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • their potential as CAs exclusively in one of the MRI modes (T1 or T2). Further requirements consisted in better biocompatibility with the targeting of tumor cells, coupling with stem cells as well as crossing the cell membrane and blood–brain barrier. Finally, involving CNT activity in other diagnostic
  • vivo studies. It is not clear whether the polyether chains of the poloxamer Pluronic® served as a non-ionic wrapping agent securing solid anchoring of the MWCNTs on the cell membrane [23][24]. Alternatively, its role might be more focused on stabilizing a disperse system by preventing the CNTs from
  • agglomeration, while the lipophilic surface of the MWCNT has sufficiently high affinity to the cell membrane for permanent connections. Chen subjected pristine MWCNT to LBL (layer-by-layer) non-covalent functionalizations with the polyelectrolyte poly(allylamine hydrochloride) (PAH) followed by silica coating
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • electrostatic interaction between negatively charged ions of the cell membrane and the surface of the culture plate. Due to the presence of NH2 groups, which promote cell adhesion, PLL is as well used as a non-viral transfection agent for gene delivery and DNA complexation [20]. Our previous studies showed that
PDF
Album
Full Research Paper
Published 27 Jun 2016

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • toxic effects on cell structures Cell components, such as the cell membrane and mitochondria, can be targets of TiO2 NPs. TiO2 NPs can decrease cell viability of primary rat astrocytes. Herein, the mitochondrial morphology was changed and mitochondrial membrane potential (MMP) was reduced, suggesting
  • mitochondrial impairment. At the same time, glutamate uptake was down-regulated, and ROS was promoted [38]. Coccini et al. [39] found that when D384 (human glial cell line) and SH-SY5Y (human neuronal cell line) cells were treated with TiO2 NPs, mitochondrial dysfunction, impaired cell membrane, and changes in
PDF
Review
Published 29 Apr 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • the microbial cell, which disturbs the power functions of the cell membrane and causes structural damage; (b) the generation of reactive oxygen species (ROS), which damage the cell membrane; and (c) the interference with DNA replication and inhibition of enzymes and other proteins [13][17][18][19][20
  • ][30]. The bactericidal activity is at least partly related to the direct interaction of the NPs with the cell membrane. In this respect, Morones et al. [13] demonstrated that with Gram-negative bacteria, this type of interaction is size dependent, and it occurs when NPs exhibit a diameter of ≈1–10 nm
PDF
Album
Full Research Paper
Published 18 Mar 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • taken up by endocytosis. During the process of endocytosis, nanoparticular drug carriers most often end up in endolysosomes with a reduced internal pH value. In order to provide improved accessibility of the drug to the whole cell, membrane destruction of the endolysosomal bilayer would be beneficial
PDF
Album
Full Research Paper
Published 30 Dec 2015
Other Beilstein-Institut Open Science Activities