Search results

Search for "conductivity" in Full Text gives 572 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • Figure 2c, and the fit parameters are given in Table 1. The model was initially given for a matrix in which conducting particles are dispersed in a polymer matrix and are separated by tunnel junctions. In this model, the conductivity in the film is determined by the number of conductive paths, N, and the
PDF
Album
Full Research Paper
Published 08 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • , bandgap, and electrical conductivity, to a large extent by controlling the cationic oxidation state and the film stoichiometry [2]. As a matter of fact, adjustments in the film stoichiometry and microstructure are experimentally viable by the choice of a suitable growth technique [9][10][11]. As a result
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024
Graphical Abstract
  • solution. It is closely related to suspension stability and morphology. In metals, the zeta potential can be altered by altering pH, concentration, and conductivity of the components of NPs [10]. Zeta potential can provide information regarding the fate, behavior, and toxicity of NPs in the environment as
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • super conductivity [21][22], non-linear optics [23][24], and moiré excitons [25]. Because the properties of MoS2 flakes are first a function of their thickness, or layer number (N), it is of a primary importance to determine the N of MoS2 flakes, including twisted MoS2 flakes and defective MoS2 flakes
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • ion beam sputtering was obtained from Fuzhou Yingfei Xun Photoelectric Tech Co., Ltd, China; it possessed a density of 19.3 g·cm−3 and a conductivity of 4.52 × 107 S·m−1. Silver conductive adhesive, which was procured from Shenzhen Ausbond Co., LTD. (Guangdong, China), was employed to affix copper
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • : direct writing; dwell time; electron dose; etching; graphene; maskless lithography; nanopatterning; Introduction The discovery of extraordinary and controllable electrical conductivity in graphene back in 2004 made it the most recognized 2D material [1]. The newly discovered phenomena, such as
PDF
Album
Full Research Paper
Published 07 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • also attracted significant interest. This material with exceptionally high specific surface area, high mechanical properties, and high thermal conductivity is expected to prepare high-performance rubber composites [21][22][23]. In our recent work [24], we successfully designed a DPNR/GO composite by
PDF
Album
Full Research Paper
Published 05 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • , which favored the charging process of the metallic electrode. These were used to facilitate the transport of charge carriers between the electrode and the layer, which can become problematic because of limitations in the conductivity of organic materials. The changes in roughness presented from the AFM
  • CPE (CPE-T) is responsible for the polarization of the sample in various areas of the material structure and on the electrodes. The mechanisms of ionic or electronic conductivity are represented by the resistance R [54]. Substitute systems with nanodots QD520:P3HT:PC71BM, QD580:P3HT:PC71BM, and QD600
  • :P3HT:PC71BM are characterized by significantly lower resistance compared to P3HT:PC71BM, which may be responsible for the higher ionic or electronic conductivity of these layers. A similar effect was reported by Zhao et al. and Zang and co-workers [55][56]. Simulations and analyses of ternary OPVs The energy
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • appropriate electrical conductivity [22]. Suspension of conductive fillers in the hydrogel structure, such as metallic particles (gold nanoparticles, silver nanoparticles) [23][24][25], carbon-based materials (GO graphene oxide, CNT carbon nanotubes) [26][27][28], and conductive polymers (polyaniline
  • the hydrogel contributes to the improvement of the electronic conductivity of weakly conductive electrocatalysts, such as metal oxides, ultimately affecting their catalytic efficiency and thus reducing the overpotential of the oxygen evolution reaction (OER) process [46]. In this work, we suspended
  • composite with significant electrical conductivity resulting from the presence of conductive carbon particles in a process that is much faster and easier to perform. It is also inexpensive as it does not require electricity consumption in long mixing and/or heating processes. The produced hydrogel
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Spatial variations of conductivity of self-assembled monolayers of dodecanethiol on Au/mica and Au/Si substrates

  • Julian Skolaut,
  • Jędrzej Tepper,
  • Federica Galli,
  • Wulf Wulfhekel and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2023, 14, 1169–1177, doi:10.3762/bjnano.14.97

Graphical Abstract
  • , Niels Bohrweg 2, 2333 CA Leiden, Netherlands Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany 10.3762/bjnano.14.97 Abstract Determining the conductivity of molecular layers is a crucial step in advancing towards applications in molecular
  • electronics. A common test bed for fundamental investigations on how to acquire this conductivity are alkanethiol layers on gold substrates. A widely used approach in measuring the conductivity of a molecular layer is conductive atomic force microscopy. Using this method, we investigate the influence of a
  • rougher and a flatter gold substrate on the lateral variation of the conductivity. We find that the roughness of the substrate crucially defines this variation. We conclude that it is paramount to adequately choose a gold substrate for investigations on molecular layer conductivity. Keywords: Au/mica; Au
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2023

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • versatility and high resolution in probing the local conductivity of materials, C-AFM has been extensively used in studying semiconductors [6][7], two-dimensional materials [8][9][10], memristive devices [11][12][13][14][15], photoelectric systems [16][17][18], dielectric films [19][20][21][22][23], molecular
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • Instruments Ltd., Malvern, UK) at 25 °C. The suspensions of the MPs were diluted to the appropriate concentration with PBS, pH 7.4 (conductivity 18 mS/cm). The size and zeta potential values were expressed as mean ± standard deviation of at least three repeated measurements. Scanning electron microscopy The
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • previous measurements or the etching process and hence its lower conductivity, and iii) other factors such as improper light alignment or SPV underestimation by KPFM. Figure 3c presents the mechanical displacement of the membrane normalized to the photovoltage. These values were obtained by dividing the
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • nanoparticles at different concentrations. They found that the addition of nanoparticles enhanced the thermophysical properties and heat transfer characteristics of the lubricant. The researchers specified that nanolubricants typically provide greater thermal conductivity and viscosity in comparison to pure
  • lubricants [2]. Sanukrishna and Prakash [3] experimentally investigated the thermophysical properties of a nanolubricant containing TiO2 nanoparticles for volume fractions of 0.07 to 0.8% in a temperature range of 20 to 90 °C. The results showed that the thermal conductivity and viscosity of the
  • that the thermal conductivity and viscosity of the nanolubricant increased with the increase in mass fraction at a constant temperature. This capability in thermal conductivity enhancement can aid in addressing heat transfer issues within systems. Due to the fact that heat transfer takes place at the
PDF
Album
Full Research Paper
Published 02 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • conductivity After dilution of the particle suspension to 0.13% (V/V) with NaCl, the average size and conductivity, as well as the zeta potential of the particles were determined using a zetasizer (zetasizer Nano ZS, Malvern Instruments, Malvern, United Kingdom) with each measurement in triplicate. Hemoglobin
  • content in this suspension was 5.4 ± 0.02 mg/mL. Analysis by zetasizer showed an average particle size of 781 ± 7 nm, a conductivity of 1.34 ± 0.07 mS/cm, and a zeta potential of −28.0 ± 0.5 mV. The oxygen release method measurement showed a percentage of 81.4% ± 2.13% functional Hb. Light microscopy
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • properties of ZnO nanostructures, such as bandgap or conductivity [26]. Decorating ZnO with metals such as Ag, Au, Pd, Pt, and Al [27][28] can provide surface plasmonic effects that assist the electron transfer process in materials and extend the light absorption range of a photodetector [29][30]. However
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • highest photothermal conversion efficiency. In addition, these materials also possess high thermal and electrical conductivity, high aspect ratio, light weight, and high mechanical strength, because of which these materials are used for photothermal applications [36]. Polyhydroxylated fullerenes were
PDF
Album
Review
Published 04 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • batteries. For the practical application of the materials, however, the problems of low conductivity and dramatic volume expansion of Si after full lithiation must still be solved [15]. To this end, silicon phosphides are actively studied. Layered silicon phosphide and diphosphide, for example, provide
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • catalyst for CO2RR. The author postulated that Co(II) is converted into Co(I), which acts as a redox center for the reduction of CO2 into CO (Figure 3c,d). Because of their poor conductivity, Co-MOFs are typically grown on conductive templates, such as fluorine-doped tin oxide (FTO), carbon cloth, and
  • low conductivity of MOFs hampers electron transport, leading to sluggish electrochemical reaction kinetics. To alleviate this problem, highly conductive materials such as graphene, and carbon nanotubes were combined with MOFs to improve overall conductivity. Additionally, the usage of pristine MOFs as
PDF
Album
Review
Published 31 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • -TrFE). Graphene (GR) exhibits outstanding electrical conductivity and strong adsorption capabilities. When combined with ZnO, it forms a more homogeneous and compact structure, thereby enhancing the alignment and arrangement of ZnO crystals. Furthermore, the layered structure of GR enables it to enwrap
  • ), P(VDF-TrFE)/ZnO, P(VDF-TrFE)/ZnO/GR were calculated as 1.23, 0.78 and 0.57 μm, respectively (Table 1). The addition of an appropriate amount of ZnO filler can improve the conductivity of the electrospinning solution, which leads to an increased stretching of the fiber filaments under the high
  • voltage and to a reduced filament diameter. Moreover, since GR has a sheet-like structure with good electrical conductivity, adding a trace amount of GR material can further enhance the solution's conductivity and promote the dispersion of ZnO particles, resulting in finer and smoother nanofiber filaments
PDF
Album
Full Research Paper
Published 31 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • than Si at room temperature) conductivity [14]. However, electrodes based on alloying suffer from deterioration during repeated lithiation/delithiation because of the large variation in volume. Despite the lower volume change ratio compared to Si (370% for Ge and 400% for Si) and the structural
  • performance of Ge-based anodes, a carbon matrix is the most popular choice to disperse nanoparticles, avoiding their aggregation and reducing the internal stress induced by volume variation, because of its flexible structure and high conductivity [30][31][32]. In our recent study, the combination of Ge
  • to 1.07 for Ge/C-iM750. This indicates that the graphite structure has undergone deformation, resulting in a highly disordered carbon matrix. Such a transformation is anticipated to enhance the conductivity and to increase the number of active sites for binding lithium ions [51][52]. These results
PDF
Album
Full Research Paper
Published 26 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • application of electrochemical methods in detection of pesticides has already been extensively studied [9][10][11][12][13]. Nanomaterials are ideal for electrochemical sensing because of their unique properties such as high chemical stability, thermal conductivity, electrical conductivity, and large surface
  • sonicated in ethanol and rinsed with DI water to remove surface impurities. The GQDs-based ink was prepared in a glass vial with four components, that is 15 mg activated charcoal as a conductivity enhancer, 15 mg GQDs as modifying agent, 25 µL Nafion as binder, and 1 mL isopropyl alcohol as solvent. All
  • semicircle with a resistance of about 12.71 kΩ. After modification with GQDs, the Rct value decreases to about 9.98 kΩ. It can be inferred that, as a result of an increase in conductivity, K3Fe(CN)6 can reach the electrode surface more easily. Cyclic voltammetry The redox electrochemical behavior of the bare
PDF
Album
Full Research Paper
Published 09 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • nanowires in combination with good electrical conductivity and thermoelectric power reaching 500 µV/K enables their application as p-type components for environmentally friendly thermoelectric devices [3][4]. Investigating the influence of relative humidity (RH) and understanding conductivity mechanisms in
  • , a decrease of conductivity in humid environments was observed, as expected for a p-type semiconductor material [6][13][18][19], other reports described a conductivity increase [20][21][22][23][24]. For example, arrays of free-standing nanowires showed an impedance increase upon exposure to humidity
  • adsorption sites (S), for example, in a reaction: [30], may contribute to accumulation of holes near the surface (Figure 3c) [12][14][31]. Then, upon exposure to humidity, the conductivity reduces; impedances measured at RH 5–20% (ca. 0.5 GΩ) are lower than impedances of 2–8 GΩ measured in the RH region of
PDF
Album
Full Research Paper
Published 05 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • surface chemistry, enabling nanosensors to achieve extremely low detection limits. Numerous nanomaterials shown in Figure 3 have different functionalities, including high conductivity, good catalytic activity, and optical and plasmonic properties, making them attractive candidates for opto-electrochemical
  • electrical signals that may be easily identified and shown by electrical equipment. Electrochemical sensor-based techniques can be classified as conductometric, potentiometric, voltammetric, or amperometric, depending on the electrical signal that needs to be measured [56]. Conductivity is measured using
  • biomolecules via electrostatic forces, stacking, and/or hydrogen bonding, which lead to high accumulation of the target analyte, are another factor that supports the development of electrochemical sensors. However, because of the high proportion of organic ligands, most MOFs have poor electrical conductivity
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • AM 1.5 solar light (1000 W/m2) was provided by a Peccell L01 solar simulator. For each test, 200 µL gas samples were taken from the photoreactor every 30 min and analyzed with two gas chromatographs equipped with either a flame ionization detector (FID, Agilent 7890A) or a thermal conductivity
PDF
Album
Full Research Paper
Published 22 May 2023
Other Beilstein-Institut Open Science Activities