Search results

Search for "diffusion" in Full Text gives 662 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • deposit. In addition, the dissociation of the precursor molecules needs to be modelled, secondary reactions of the etch products need to be taken into account, also the residence time of the fragments on the deposit, the sticking and diffusion of the water molecules, and so on. Although this is a very
  • the etching takes place is unknown. It was noticed that a small change in the pressure of water vapour led to a significant change in the etching rate, suggesting that the process is gas-limited (see Supporting Information File 1, section S3). The role of diffusion could therefore be significant. The
  • diffusion rate of adsorbed contamination is known to be enhanced by the presence of water layers [21]. But since the relevant quantities are hard to measure, the diffusion rate has not been included in the model, nor have some other factors such as scattering, porosity, and secondary etch product reactions
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • fragmentation of NWs is attributed to the interplay between heat-enhanced diffusion and Rayleigh instability. In this work, we demonstrated that contact with the substrate plays an important role in the fragmentation process and can strongly affect the outcome of the heat treatment. We deposited silver NWs onto
  • process, fragmentation in either adhered or suspended parts can dominate. Experiments were supported by finite element method and molecular dynamics simulations. Keywords: diffusion; finite element method; heat treatment; molecular dynamics simulations; morphological changes; scanning electron microscopy
  • . However, during prolonged heat treatment (lasting minutes or more), surface atom diffusion can lead to morphological changes in NWs even at temperatures several hundred degrees below the melting point of the material [26][27]. Sintering of Ag and Au NWs at intersections can occur at temperatures as low as
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • Harper [31] based on morphological effects of IBS. The height h(x, y, t) of the sputtered surface can be described by a linear equation (Equation 1): where ν0 is the constant erosion velocity, ν is the effective surface tension, and D denotes the surface diffusion which is activated by different physical
  • processes (i.e., thermal diffusion and ion-induced diffusion) [32]. This approach is based on the linear cascade model and Gaussian approximation of energy distribution as developed by Sigmund [26] to describe ion–atom collisions inside the target. Rutherford backscattering spectrometry (RBS) studies in the
  • diffusion processes. The values for α and β were found to be α = 0.42 and 0.26 and β = 0.23 and 0.19 for Si and Ge, respectively, indicating that sputtering dominates in both cases to create ripples on the two surfaces. However, this process is better for Si. Transmission electron microscopy studies The TEM
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024
Graphical Abstract
  • unstable and tend to agglomerate. NPs attract negative or positive ions from the medium to build a diffusion double layer. The electronegativity of the NPs also depends on the pH value of the medium [40]. In colloidal solutions, negatively charged metal oxides decrease the zeta potential, which reflects
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • rate of collisions between two spheres in solution, normalized by the number of binding sites for that protein, where RNP is the radius of the NP, NA is Avogadro’s number, RA is the effective adsorbate radius, D is the pair diffusion coefficient given by taking the viscosity η = 8.9 × 10−4 Pa·s. We
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • is dependent on the precursor dynamics (adsorption/desorption rate, diffusion), electron beam (lateral size, electron flux, energy), and scanning parameters (dwell time, refresh time, scanning strategy) [22]. Additionally, residual hydrocarbons inside the scanning electron microscope chamber manifest
PDF
Album
Full Research Paper
Published 07 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • a transport exponent value (n) of 0.3, indicating a release mechanism primarily driven by Fickian diffusion [44]. The free terpenes exhibited a value of 0.6, suggesting an anomalous transport mechanism for drug release. This mechanism involves a combination of diffusion and dissolution processes for
  • conditions. Modified Franz cells, equipped with a polyethersulfone membrane (Sigma-Aldrich) and with a diffusion area of 1.77 cm2 were used in the assays. A Microette (Hanson Research, USA) was used. The receptor compartment was filled with 7.0 mL of a receptor solution composed of 0.1 M phosphate buffer and
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • nanofiber compositions [11][12][13]. For a long-term drug release, hydrophobic polymers are chosen for the preparation of drug-loaded nanofiber scaffolds. This is because the hydrophobicity of the polymer could form air gaps, slowing matrix hydration and suppressing drug diffusion from the nanofibers [14
  • compared to that of other models. In addition, the release exponent (n) of the equation was 0.1703, indicating that the BBR release from the BBR/PLA nanofiber scaffold followed the Fickian diffusion. In this mechanism, the release of BBR was governed by a diffusion process, where the diffusion rate was
  • higher than the polymer relaxation [43]. Based on the R2 values shown in Table 1, the release data of the BBR NPs/PLA nanofiber scaffold was simultaneously well described by the Higuchi and Ritger–Peppas models, suggesting that BBR NPs release was mainly controlled by a diffusion mechanism. However, the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • the morphology also facilitates the penetration by the electrolyte, the diffusion of ions to electroactive sites, and the rapid release of the reaction, thus promoting the kinetics of the reaction and achieving higher efficiency of the catalyst built into the 3D structure [19]. The hydrogel matrix
  • designed to facilitate and increase mass transport; therefore, it is vital to achieve the desired three-dimensional structure of the material. In addition, the free space in the form of pores and the network structure within the polymer facilitate the penetration by the electrolyte, the diffusion of ions
  • scaffold, coating its surface. The characteristic porous structure is still formed but has a much more granular structure. The presence of pores is very important in the case of the application of hydrogel composite in OER. As aforementioned, the porosity has a beneficial effect on the diffusion of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • polymers or the polymerization of monomers [17]. The first one is more commonly describe in the literature, and the techniques usually employed to produce them include nanoprecipitation, solvent evaporation, emulsification/solvent diffusion, and emulsification/reverse salting out [18][19]. The main
  • homogenization); (2) low-energy methods, which requires the precipitation of nanoparticles from homogeneous systems (such as microemulsions); and (3) methods based on organic solvents (emulsification–diffusion method) [35]. Liposomes are vesicles composed of a phospholipid and cholesterol with an aqueous core
PDF
Album
Supp Info
Review
Published 03 Jan 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • effective way to reduce thermal drift to a minimum is to carry out SPM experiments under cryogenic conditions close to the temperature of liquid helium. The cryogenic temperature, however, also drastically reduces the rates of thermal processes such as on-surface reactions, diffusion, or desorption [25
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • filled with poly(lactic-co-glycolic acid) (PLGA) cores of different sizes resulting in interfacial water layers with different thicknesses and therefore with tunable elasticity [38]. Semielastic particles whose Young’s moduli were around 50 mPa showed the fastest diffusion in mucus. However, harder
  • the interaction with mucus in vitro, they demonstrated that the apparent permeability coefficient (Papp value) through porcine intestinal mucus as well as the diffusion determined by particle tracking is significantly higher for softer particles. However, as soon as cells are included in the system
PDF
Album
Perspective
Published 23 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • dynamics is indeed the effective mobility of holes and electrons (under the effect of drift diffusion) in the donor and acceptor networks. After the application of a light pulse – and during the duration of the pulse – the charge mobility limits the rate at which an electrostatic equilibrium can be reached
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • photothermal LFA (A). Comparison of Pe and Da on the LFA membrane. (Pe, the ratio between diffusion time and convection time), (Da, ratio between diffusion flux and reaction flux) (B). Comparison of visual and thermal signal (A, B and C stand for 100, 60, 30 nm sized GNP respectively: A, B and C correspond to
PDF
Album
Review
Published 04 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • precursor for diffusion doping of wafers and as anode material for Li-ion batteries. A similar method with a hydrogenation step offers the possibility to obtain other compounds, such as silicon selenides, arsenides, and sulfides. Keywords: ampoule annealing; defective zinc blende structure; DFT
  • microcircuits through the introduction of P donors by diffusion doping of wafers with an efficiency comparable to monolayer doping [18] or ion implantation [19]. This paper outlines the successful formation of the cubic Si3P4 phase under mild conditions. The technique developed for this investigation requires
  • phosphorus as a dopant. From the outset, phosphorus diffusion through hydrogenated and oxide layers was surmised to be different. In the case of similar previously performed syntheses of Si NPs with an oxide layer [21], phosphorus diffuses deep into the NP cores and distributes rather homogenously with a
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • resistance to electromigration and lowers the tendency to undergo diffusion, giving a higher stability in environments involving both elevated temperature and high current densities [1][3]. In current technology nodes with device dimensions below 10 nm, electron scattering becomes the dominant factor in
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • antigen binding ability. Improper antibody conjugation influences antigen binding affinity and specificity. Once injected into the body, the ACNPs face both physical and biological barriers (such as diffusion, flow and shear forces, aggregation, protein adsorption, phagocytic sequestration, and clearance
PDF
Album
Review
Published 04 Sep 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • –Peppas model, also called power law, was initially used to describe drug release in polymeric systems where the two predominant mechanisms were relaxation of the polymer chains and diffusion. In this model (Equation 2), Mt/M∞ is the fraction dissolved, K is a constant that incorporates structural and
  • release can be inferred through the value of the release exponent n. For spherical systems, n will take a value of 0.43 for drug release governed by Fickian diffusion, a value of 1 for zero-order release, and intermediate values for intermediate behavior, often regarded as anomalous transport. In our case
  • , the estimated value of n was 0.56, suggesting mixed release mechanisms at play with a strong contribution of diffusion. As in our case there is no polymer relaxation involved, it may be hypothesized that the burst effect could be slightly affecting the global kinetics of the process [35]. Although
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • reactants in segmented flow and oil in continuous flow. They can control the reaction rates by mass transfer through convection and diffusion [20][21]. Furthermore, droplet-based microfluidic devices are frequently utilized to synthesize complex materials of uniform size, as each droplet can function as a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • microbial strains S. aureus (Gram-positive) and S. typhi (Gram-negative) using the disk diffusion method at different pH values. To establish the bioactivity of the nanocomposite, antibacterial assays were also conducted in media with different pH values without the nanocomposite. These resulted in no
  • to experiment antibacterial activity. The solutions with pH 4, 6, and 12 were also used to determine stability of the nanocomposite through zeta potential measurements and TEM. The disk diffusion method was employed to assay the antibacterial activity of the samples [52]. In order to conduct the
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • the low-frequency region. The former component is characteristic of charge transfer resistance, while the latter presents the diffusion of ions in the solid phase. Compared to the pure Ge electrode, the diameters of the semicircle are smaller in the Ge@C electrodes because of the higher electrical
  • elements (CPE) [65]. According to Table 2, the charge transfer resistances of all Ge@C electrodes are much lower than the values of the pure Ge electrode, and Ge/C-iM750 exhibits the lowest value. The ionic conductivity was evaluated using the lithium-ion diffusion coefficient () using the following
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • difficult to achieve in a highly heterogeneous environment. Therefore, the analysis of the properties of the reaction zone within the flame is critical for the optimal growth of CNTs. In the present study, a comprehensive comparison between the CNT synthesis using a methane diffusion flame and a premixed
  • significant difference in temperature distribution between the two flames causes a difference in the characteristics of the growth products. In the diffusion flame, the growth is limited to specific regions at certain height-above-burner (HAB) values with a temperature range of 750 to 950 °C at varying radial
  • control to achieve stable growth conditions. Yet, achieving independent parametric control in flame synthesis is a challenging task. In a diffusion flame, specific locations within the flame are imperative and conducive for CNT growth, depending on height above burner (HAB), local distance from the flame
PDF
Album
Full Research Paper
Published 21 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • 1 × 1018 cm−3. The three Zn doping levels of InP layers were purposely inverted along the growth direction to facilitate electrochemical capacitance–voltage (ECV) characterization due to the strong Zn diffusion. The InP:Zn and the GaInAsP:Zn layers were epitaxially grown at a surface temperature of
  • KELSCAN [13], which evaluates the contact potential and surface photovoltage as a function of the position. The Silvaco ATLAS model solves the Poisson equation self-consistently coupled to carrier continuity and transport equations in the well-known drift diffusion model, which is given detail in [22] and
  • space charge that extends for around 0.16 μm inside the first InP:Zn region. As a matter of fact, the diffusion of Zn impurities is likely to occur due to the high temperatures required for the growth of the material and the high diffusion coefficient of Zn in InP [30]. Therefore, the true spatial
PDF
Album
Full Research Paper
Published 14 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • the electrode are diffusion-controlled, and the linear relationship (R2 = 0.9674) between peak height and scan rate suggests an enhanced electrochemical activity. Electrochemical detection of malathion Using the modified working GQDs/GCE electrode as electrochemical sensor, a differential pulse
PDF
Album
Full Research Paper
Published 09 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • , e.g., RH 73% and 95%, Figure 2a). A small tail at low frequencies (RH 95%, Figure 2a inset) corresponds to the appearance of a Warburg element W in the equivalent circuit (Figure 2b), which may be attributed to diffusion processes from liquids at high humidity. The values of impedance magnitude and
  • the physisorbed water layer grows [27][32]. At RH above 60% (Figure 4b) the Warburg element appears and it grows with increasing the humidity, which suggests increased contribution of the diffusion processes to the total impedance with increased thickness of the water layer adsorbed at the nanowire
PDF
Album
Full Research Paper
Published 05 Jun 2023
Other Beilstein-Institut Open Science Activities