Search results

Search for "droplets" in Full Text gives 177 result(s) in Beilstein Journal of Nanotechnology.

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • energy supplies. Triboelectric nanogenerators (TENGs) were used as electronic skin for pressure detection and material identification [50][51]. Pressure sensors based on piezoelectric nanogenerators (PENGs) were used to detect tiny pressure deviations from water droplets [52][53], wind flow [53][54][55
  • novel data source for big data and AI. Especially, TENGs are good candidates for designing AI sensors [66]. TENGs can be used as an energy source for traditional sensors to collect tiny amounts of energy from the environment, such as from liquid droplets [67]. The performance of TENGs can be improved
PDF
Album
Review
Published 08 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  •  1a. Then, by applying a voltage difference, typically 1.2 kV, between the solution and the capillary, droplets of solvent and diluted molecules are created and accelerated towards the capillary, through the differential pumping vacuum system, finally reaching the sample in ultrahigh vacuum. The main
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • preparation procedures differ distinctly. For example, the temperature range for Sr segregation reaches from 570 K [22] to 1570 K [23]. In many cases, mixed surface terminations are obtained consisting of multiple islands of dominant terminations or SrO droplets [21][22][24][25]. SrTiO3(100) bulk structures
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • -cleaning devices [12]. It was concluded that the maximum collection rate was achieved when the aerosol particles first formed into clusters and then dendrites in order to balance their electrostatic forces. The aggregation of colloidal particles (small particles or droplets typically between 10 nm and 10
PDF
Album
Full Research Paper
Published 06 May 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • , when laser deposition was used, the nanoparticles found in [3] exhibited the FCC structure. In this case, during the deposition, the substrate was bombarded with liquid droplets of a Cu3Au nanoalloy. Once at the substrate, they spread out and acquired a round shape. As a result, after crystallization
  • reduce the surface energy of the liquid droplets when they are combined, it is often energetically advantageous to separate them again into several parts. It is clear that the lower the binding energy between the atoms, the greater the extent to which these processes will occur, as observed in the case
  • even lower binding energy when compared to the atoms of the copper center. At high temperature values in the synthesis chamber, the influence of all these factors prove that the discharge of the smallest droplets of gold from the surface of a binary cluster can be energetically favorable. Note that the
PDF
Album
Full Research Paper
Published 19 Jan 2021

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • are fully understood yet, especially regarding metallic fluids, it is clear that the formation of nanometre-sized particles, droplets, and clusters as well as their movement are strongly linked to their wetting behaviour. For this reason, the thermodynamic stability of thin metal layers (0.1–100 nm
  • system due to material re-evaporation and Ostwald ripening describes the theoretically predicted and experimentally obtained results. Thus, dewetting phenomena of thin metal layers can be used to manufacture nanostructured devices. From this point of view, the application of gold droplets as catalysts to
  • grow germanium nanowires on different substrates is described. Keywords: dewetting; germanium; interfacial energy; Laplace pressure; nanostructure; nanowire; Ostwald ripening; wetting layer; Introduction Wetting phenomena as well as the formation and movement of droplets are essential for numerous
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

A 3D-polyphenylalanine network inside porous alumina: Synthesis and characterization of an inorganic–organic composite membrane

  • Jonathan Stott and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2020, 11, 938–951, doi:10.3762/bjnano.11.78

Graphical Abstract
  • ), the model of Wenzel can be applied [55][56][57]. Here we assume a relatively high fraction, f, because no roll off angles or high adhesion properties of the water droplets are observed (see Supporting Information File 1, Figure S5). The morphology of the polymer structure within the pore volume is
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • the electrostatic potential above the graphene flake and the SiO2 substrate. The patterns observable on the graphene flake are most likely caused by water droplets, which have formed due to the ambient conditions [34][35]. Small changes in the patterns were observed between two different scans
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • ]. The droplets compete for the tin atoms and oxygen molecules [30]. This results in a locally reduced material concentration in the surrounding area of the catalyst-decorated samples. As seen from the simulations of the volumetric flow (Figure 2), an increased volumetric flow will result in a reduced
  • influenced by the NW diameters [33][34]. Due to the reduced volume of the smaller Au droplets, the footprint of these droplets is reduced in comparison to larger Au droplets. Therefore, for the required supersaturation and formation of one lattice plane of the smaller catalyst droplets, less material (tin
  • Au droplets dewetted from the previously deposited gold film. By using Au NPs (Ø 80 nm), a pressure reduction by a factor of 10 was necessary to produce laterally aligned NWs. For these samples the density of the catalyst droplets is highly reduced [35] and requires a more precise adjustment of the
PDF
Album
Full Research Paper
Published 28 May 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  •  22. When hydrophilic CuO and ZnO are loaded on the surface of nanofibers, water droplets can spread into the gaps of the flaky CuO–ZnO structures, leading to the hydrophilic character of the CNFMs. Photocatalytic degradation experiment Recently, researches on the application of CuO–ZnO nanocomposites
PDF
Album
Full Research Paper
Published 15 Apr 2020

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • with droplets of very small diameter (<100 nm), we investigated thermotropic phase transitions as an alternative to the standard procedure of high-pressure homogenization. Employing shock dilution with ice-cold water during the phase inversion gives the opportunity to produce nanoemulsions without any
  • distributions depending on their lipid:surfactant ratio. Using a nonionic surfactant resulted in an uncharged surface of the emulsion droplets. The nanoemulsion with small particles of 25 nm in diameter showed an slightly increased cytotoxicity in comparison to the barely toxic nanoemulsions with particles of
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • liquid alloy and 2) core–shell and Janus-like nanoparticles made of liquid silicon and copper droplets. We have presented new data on the formation of metal/semiconductor nanoclusters, such as the transition of particles from a core–shell structure to a Janus-like structure starting from the liquid state
  • variation of the cooling rate results in large variations of the structure of the final nanoparticles [5], in particular of their phase. Modelling of silicon and copper droplets Here, we have considered the case that the initial objects were liquid droplets of silicon and copper, 1.2 nm in size, located at
  • a short distance from each other (Figure 4a). The initial temperature of the droplets is T = 1800 K. The value of the initial temperature was chosen above the melting points (copper melting point TCu = 1356.55 K, silicon melting point TSi = 1688 K) in order to destroy the long-range bonds in the
PDF
Album
Full Research Paper
Published 13 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • in polar media is the reverse microemulsion technique [22][23][30][31][32][33][34][35][36][37][38][39][40][41][42][43]. In a reverse microemulsion, the aqueous solution is confined in uniform, nanosized droplets that are stabilized by a surfactant such as a polyoxyethylene (5) nonylphenylether (trade
  • name Igepal® CO-520) and distributed in the continuous nonpolar phase [44]. The ratio between the aqueous components and the surfactant determines the size of these droplets [30], which act as nanoreactors. For the polycondensation of precursors such as TEOS, ammonia usually acts as a catalyst [43
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • remained practically unchanged during one year of storage. Carriers, especially fluid carriers such as liposomes, can reduce in number in a final product during shelf life. Liposomes have a tendency to fuse with the stabilizer layers of oil droplets in oil/water creams. For the best quality, the
  • products. Thus, all nanoparticles, e.g., as reported for liposomes [23][24], have an increased adhesiveness to skin. In a recent study it could be shown that the adhesiveness of solid lipid particle suspensions to human skin is superior to fluid nanoemulsion droplets. Both, similar in size, were labeled
  • sunscreens are normally dissolved in the oil phase of oil/water emulsions. Due to the liquid state of the oil droplets, the evenly and molecularly dispersed sunscreen within the droplets can be released quickly and penetrate into the skin. The release of oxybenzone from an emulsion and SLNs was compared in
PDF
Album
Review
Published 04 Nov 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • foam was immediately diluted to 10 mL of HEPES buffer. Size fractionation of the microbubbles was achieved by flotation for 60 min. Optical microscopy A few droplets (three to four) of the bubble dispersion were positioned in a concave glass slide and covered with a glass slide. The samples were
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • the VAC process, namely the surface roughness and the crystallite orientation on the substrate. Antifog coating with MOF films Water condensation on surfaces is a known phenomenon occurring at the dew point on substrates such as glass, which serves as a favorable nucleation site for water droplets
  • surface is expected to form, hindering the nucleation of water droplets on the glass surface. For this purpose, we employed the newly developed methodology for the synthesis of nanostructured Ni-CAT-1 films on gold substrates with a slightly modified synthesis procedure in order to address larger
  • , obscured by the water droplets generated by the condensation of steam on the glass surface (Figure 5E). In contrast, using a MOF-coated glass substrate, high transparency and clear visibility through the substrate were enabled, and the seal was visible even after longer exposure times (Figure 5F,G). To
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • (Table 5). This trend suggest that TOC could contribute to stabilize the interface between the lipid and the aqueous phase, leading to smaller droplets and finally to smaller nanoparticles. The agglomerate presence was more evident in the case of compritol and absent in the case of suppocire, as in the
PDF
Album
Full Research Paper
Published 29 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • vapour annealing [201]. Complicated morphology shifts such as swelling, coalescing of aggregates, bicontinuous pattern formation, one-dimensional droplet formation, and the periodic evolution of the droplets were observed. Mori et al. reported the formation of two-dimensional arrays of disk-shaped nano
  • droplets and used a subphase-miscible solvent [218]. The modified method may become a powerful method to fabricate two-dimensional thin films of zero-dimensional nanoparticles at liquid interface. The lateral degree of motional freedom of the liquid interfaces can promote associations of molecules and
PDF
Album
Review
Published 30 Jul 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • nickel catalyst layers The thickness of the catalyst Ni layers was reduced to 100 nm, which was thin enough as not to compromise the resonator performance but sufficient to avoid the formation of Ni droplets on the surface of the SMRs during the heating processes due to dewetting [17]. However, the
PDF
Album
Full Research Paper
Published 29 Apr 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • spectroscopy (FTIR, Nicolet iS50, Thermo Scientific, USA). The contact angles were measured at room temperature with an optical contact angle meter (DropMeterTM Element A-60, Maist, Ningbo, China), where the static CAs of the droplets (6 µL) placed onto the surfaces were measured five times at different
PDF
Album
Full Research Paper
Published 15 Apr 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • between superhydrophobicity and superhydrophilicity using a folded graphene coating that was prepared by ethanol drying and prewetting. The wettability of droplets on electrodes coated with an insulator thin film can be changed by applying direct or alternating-current potentials. This phenomenon is
  • termed electrowetting [19]. The equilibrium morphology under electrical wetting conditions is determined by the equilibrium of Maxwell stress and Laplace pressure [20][21]. Verplanck et al. [22] reported the reversible electrical wetting of droplets on superhydrophobic silicon nanowires in air and oil
  • environments. At 150 V, the maximum contact angle could be reduced by 23° by electrical wetting in a reversible manner. Li et al. [23] studied the diffusion of droplets of ionic liquids on an insulating electrode subjected to an external voltage. The catalytic effect of a vertical electric field on the
PDF
Album
Full Research Paper
Published 10 Apr 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • deposition at 500 °C. After short sputtering times (3 and 5 min), the SiNWs are decorated with irregularly shaped droplets of 20–60 nm diameter (Supporting Information File 1, Figure S6). In the range from 7 to 10 min (Figure 3), the upper SiNW layer is completely covered with Ag, yielding Ag cylinders for
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG

  • Imtiaz Ahmad,
  • Floor Derkink,
  • Tim Boulogne,
  • Pantelis Bampoulis,
  • Harold J. W. Zandvliet,
  • Hidayat Ullah Khan,
  • Rahim Jan and
  • E. Stefan Kooij

Beilstein J. Nanotechnol. 2019, 10, 696–705, doi:10.3762/bjnano.10.69

Graphical Abstract
  • nonwetting substrates, suspension droplets typically leave a deposit of particles after evaporation of the solvent in the form of a cluster [54][55][56]. For instance, to maintain its contact angle on nonwetting surface like HOPG, the inward motion of the shrinking droplet will sweep away all particles from
PDF
Album
Full Research Paper
Published 13 Mar 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • changing their concentration. Besides, the PI-MOCVD technique offers the additional benefit of injecting micro droplets by using an electric valve granting excellent control over the quantity of precursor transferred to the reaction chamber and therefore a good control of the thickness of the films. Hence
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019
Other Beilstein-Institut Open Science Activities