Search results

Search for "electrocatalyst" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials
  • particles of the MnCo2O4 electrocatalyst and conductive carbon in a PNIPAAm hydrogel precursor solution, which was then subjected to polymerisation. As a result, a hydrogel composite was created in a single-stage synthesis process. In addition, the applied methodology allowed us to avoid the need to use
  • electrolytes in an electrochemical process. It provides a greater effective surface area and facilitates the transport of electrons and ions from the electrolyte to the electrocatalyst surface. As the morphological analysis showed, with the increase in the concentration of conductive carbon particles, the size
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • also have some limitations that prevent their wider use [3][4]. Two of the significant limitations of PEMFCs are durability and cost, which are related to each other in an unfortunate way because durability decreases as the loading of the costly electrocatalyst is reduced [1][2][3]. Both durability and
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • 0.94 V vs RHE, 0.78 V, and 3.6 mA·cm−2, respectively, with an electrochemical active surface area of 66.92 m2·g−1 and a mass activity of 40.55 mA·mg−1. The optimum electrocatalyst shows considerable electrochemical stability over 10,000 cycles in 0.1 M KOH solution. Keywords: copper cobalt oxide NPs
  • electrocatalyst. Results and Discussion The microwave-assisted one-pot synthesis connecting graphene oxide (GO) nanosheets with bi- and trimetallic precursors under alkaline conditions is presented in Figure 1. GO serves as functional network and conducting matrix, while PVP acts as structure-directing agent
  • electrocatalyst measured in 0.1 M KOH solution saturated with N2 or O2 was examined (Figure 3a). The plot shows a clear and characteristic cathodic ORR peak at 0.8 V (vs RHE), for the solution saturated with O2, which is not observed in N2-saturated solution. This indicates that ACC-2 has a superior
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • the chemical composition of ZnxCoy particles. It is expected that it would play an important role as an electrocatalyst in the composites for lowering the overpotential for the given electrochemical reactions. For further inspection of the structural characteristics, the surface chemistry of ZnxCoy–C
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • mechanically stable scaffold for an air electrode with an inherent catalytic activity, due to their nitrogen content [10][11][12]. The inherent nitrogen leads to nitrogen-doped carbon, which is a known electrocatalyst for the oxygen reduction reaction [13]. The carbonisation temperature determines the degree
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • undergo a sodiation process to form Na2S2. Then, the Na2S2 intermediate is converted to Na2S. Another remarkable electrocatalyst are gold nanodots, as reported by Wang et al. [49]. The in situ synchrotron XRD results show that gold can effectively catalyze the transformation of Na2S4 into Na2S in the
  • , the vanadium carbide–carbon nanofibers (VC-CNFs) composite acts as electrocatalyst for oxidizing polysulfides to thiosulfate. Second, the thiosulfate serves as mediator to immobilize long-chain sodium polysulfides and transforming them to short-chain sodium polysulfides or sodium disulfide. Then
PDF
Album
Review
Published 09 Sep 2021

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • acetylacetonate precursors. Keywords: electrocatalyst; fuel cells; hybrid nanomaterial; long-term stability; nanoparticle embedding; one-step synthesis; plasma-enhanced chemical vapor deposition (PE-CVD); Introduction The global fuel cell market reached a value of $4.5 billion USD in 2018 and is projected to
  • ] or the supercritical CO2 method [14]) to form the required electrocatalyst [6]. The third step is technically challenging and has a substantial influence on the homogeneous distribution of NPs on the support. Since the NPs are typically bound to the support by weak van der Waals forces, the
  • process at a substrate temperature as low as 350 °C using platinum acetylacetonate as a single-source precursor was established for the deposition of a Pt/C electrocatalyst. Platinum in the form of NPs is homogeneously distributed in a carbon support structure due to the simultaneous deposition of both
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • , Universitetskii pr. 26, 198504 St. Petersburg, Russia 10.3762/bjnano.11.79 Abstract We provide a direct comparison of two distinct methods of Ti felt surface treatment and Pt/Ir electrocatalyst deposition for the positive electrode of regenerative fuel cells and vanadium–air redox flow batteries. Each method is
  • of some RFBs (such as the vanadium–air RFB). The positive electrode of these devices has to perform the challenging OER and ORR on one material system. A bimetallic Pt/Ir electrocatalyst is used most commonly as it provides minimal overpotentials under strongly acidic conditions [3][8][9][10]. The
PDF
Album
Full Research Paper
Published 22 Jun 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • materials have been utilized to support nickel as electrocatalyst for the OER, novel materials with high catalytic activity and strong durability still need to be investigated (Table S3, Supporting Information File 1). In our study, by using CTFs we have the advantages of abundant aromatic nitrogen atoms
  • thermal stability of the CTF support is another advantage, as this is often a problem of many other catalysts. CTF-1-600, as a metal-free electrocatalyst, showed better performance than N-doped carbon nanomaterials, which required an overpotential of 0.38 V vs RHE at 10 mA/cm2 [57], better performance
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • H2 gas [9]. The major roadblock in this method is the development of a sustainable electrocatalyst for the selective reduction of oxygen to H2O2 [19][20][21][22][23]. Today, most electrochemical H2O2 production methods rely on precious-metal-based materials or transition metal and/or metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • Information File 1, Figure S4b), and the S content increases with the nitrogen content. This functionalization occurs during the purification step with sulfuric acid. In the N-CNTHT sample, we measured a clear decrease of the nitrogen-oxidized species. Electrocatalyst support materials are crucial to both the
  • selectivity In order to proceed to a first screening of the as-prepared catalysts, their electrochemical properties were evaluated by RRDE measurements. It is worth noting that electrocatalyst investigations are usually performed with a rotating ring-disk electrode (RRDE) in acidic or alkaline media. Previous
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • an increase in the number of electrons. Accordingly, the electrocatalyst with the highest performance was obtained from the activated sample doped with nitrogen by the conventional method, which combined the most appropriate textural and chemical properties: high microporosity and adequate proportion
  • electrocatalyst used for the reaction. The most commonly used electrocatalyst to supply faster kinetics and a four-electron pathway are platinum-based materials [3][4], which are costly and may assume up to 50% of the total cost of a fuel cell [5]. Transition metals [6][7], metal oxides [8][9] and carbon
  • the response of the electrocatalyst towards the oxygen reduction reaction. Results and Discussion Effect of microporosity The nitrogen adsorption–desorption isotherms and the pore size distributions obtained by applying the quenched solid density functional theory (QSDFT) are presented in Figure 1a
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • ambient conditions. Keywords: boron nitride monolayer; CO2 conversion; density functional theory; single-atom electrocatalyst; Introduction In the past decades, considerable carbon dioxide emissions into the atmosphere due to large-scale anthropogenic industrial manufacturing have resulted in global
  • electrocatalyst for nitrogen fixation with a very small overpotential of only 0.19 V. In addition, through molecular dynamics modeling, they demonstrated that Mo-doped BN synthesized in acidic conditions is stable at high temperature (500 K) [45]. In our previous reports, we have studied BN nanomaterials used as
  • earth, thus using Mo-doped BN monolayers as an electrocatalyst for CO2 conversion can significantly reduce the cost compared with conventional noble-metal catalysts, such Au, Ag, Pt, Pd and so on [30][33][48][49]. This work provides insight and guidance to experimentalists in search of low cost, high
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • electrocatalyst to the point that a steady state is reached upon continuous electrolysis. The current then stays stable for several hours. The comparison with the literature shows that only Kokoh et al. tested the long-term stability of their Ru-based electrocatalyst [14]. The fine dispersion of Ru in the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • NiCoP HER electrocatalyst. The catalyst showed a high electrochemically active center density that benefited the electron transfer within the electrode and between electrolyte and electrode surface. The electrocatalytic activity of the HER was thus improved. In the two-electrode system using NixCoyP
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • ]. In 2015, Zhang and co-workers synthesized a carbon foam co-doped with nitrogen and phosphorous, which was the first bifunctional electrocatalyst for both ORR and OER [49] for high-performance rechargeable zinc-air batteries. The same material was used by Xue et al. as a counter electrode in dye
PDF
Album
Review
Published 18 Jul 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • hydrogen. Two-dimensional (2D) atomic layer thin materials, such as monolayer transition-metal dichalcogenides (TMDs) [11][12][13][14][15][16][17][18][19], have demonstrated many fascinating properties, including the substitution of Pt as an electrocatalyst for HER. 2D MoS2 has been widely studied
PDF
Album
Full Research Paper
Published 18 Jun 2018

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • nanocubes, show higher catalytic activity towards OER in alkaline medium. This is due to the presence of the low surface energy crystal plane of Co3O4 NPs and their synergistic interaction between N-doped because graphene helps to tune the properties of the OER electrocatalyst. Yang et al. fabricated
PDF
Album
Review
Published 24 Mar 2017

Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations

  • Aldo S. Gago,
  • Juan-Pablo Esquivel,
  • Neus Sabaté,
  • Joaquín Santander and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2015, 6, 2000–2006, doi:10.3762/bjnano.6.203

Graphical Abstract
  • CH3OH. The Pt–Ru-based anode is the most active binary electrocatalyst for DMFCs. The high activity of Pt–Ru for methanol oxidation has been attributed to both a bifunctional mechanism [24] and a ligand (electronic) effect [25]. The bifunctional mechanism of Pt and Ru involves the adsorption of oxygen
PDF
Album
Full Research Paper
Published 07 Oct 2015

Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

  • Roswitha Zeis

Beilstein J. Nanotechnol. 2015, 6, 68–83, doi:10.3762/bjnano.6.8

Graphical Abstract
PDF
Album
Review
Published 07 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • an electrocatalyst, as the reference and substrate material for the catalysts consists of carbon. The decomposition of the organic species of Mn(II) glycolate in combination with an immediate oxidation to Mn3O4 in O2 atmosphere was observed at 185 °C in the in situ XRD measurement depicted in Figure
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • ]. Solid inorganic proton conductors (e.g., sintered zirconium phosphate) allow for increasing the working temperature up to 150–250 °C [9]. Only platinum group metal (PGM) electrocatalysts are stable enough in the low-pH environment of PEMs. Platinum is the best electrocatalyst for both hydrogen oxidation
  • reaction (HOR) and oxygen reduction reaction (ORR), but it is very expensive. To reduce the Pt loading and therefore the cost for the electrocatalyst, Pt-containing alloys and structured nanoparticles, e.g., “core–shell” materials with less expensive metals are being investigated. Alkaline fuel cells are
  • H2 as a result of IPA dehydrogenation on a Pt catalyst was reported [89]. In acidic solutions only Pt and PtRu are used as electrocatalysts [81][82], while in alkaline solutions the catalyst selection is wider. At high pH values Pt is not the most active electrocatalyst, and Pd is at least at par or
PDF
Album
Review
Published 29 Aug 2014

Double layer effects in a model of proton discharge on charged electrodes

  • Johannes Wiebe and
  • Eckhard Spohr

Beilstein J. Nanotechnol. 2014, 5, 973–982, doi:10.3762/bjnano.5.111

Graphical Abstract
  • experimentally the platinum surface exhibits one of the highest exchange current densities for the proton discharge reaction. Much research effort in electrocatalysis is directed towards replacing this expensive electrocatalyst with cheaper materials and – ideally simultaneously – to further improve the
PDF
Album
Full Research Paper
Published 07 Jul 2014

Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study

  • Ye Wei,
  • Haifei Zhan,
  • Kang Xia,
  • Wendong Zhang,
  • Shengbo Sang and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 717–725, doi:10.3762/bjnano.5.84

Graphical Abstract
  • the electronic and quantum transport properties of graphene. Such doped graphene is envisioned with exciting applications as high-performance FET devices [8], and metal-free electrocatalyst for oxygen reduction fuel cells [9]. In addition to doping, various graphene derivatives have also been
PDF
Album
Full Research Paper
Published 27 May 2014
Other Beilstein-Institut Open Science Activities