Search results

Search for "electron-transfer" in Full Text gives 210 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • ], hybridization of the graphene defect with the metal possibly induces electron transfer into graphene giving rise to local n-doping and the Dirac cone below EF. In addition, the distortion of the graphene lattice that accompanies the increased hybridization with the surface may explain the dim rim of the vacancy
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • hydroxylamine intermediates in a two-step, two-electron transfer reaction, culminating in 4,5-dihydro-4,5-dihydroxyimidazole, whose breakdown releases the reactive dialdehyde glyoxal, which, in the presence of guanosine, generates guanosine–glyoxal adducts. These reactive metabolites are toxic to the parasite
PDF
Album
Review
Published 27 Mar 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • combinations as part of the donor:acceptor blend is prompted by singlet excitons. This increases the electron transfer current, leading to higher efficiency. By incorporating quantum dots into active layers, the following effects were observed: boosted exciton formation, minimized interface charge
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • absorption peak below 400 nm due to the nanometric size effect of the synthesized ZnO and characteristic hexagonal ZnO NPs [32]. A broad band at 362 nm in the UV–vis spectrum was reported, indicating the formation of ZnO NPs, and it could be due to an electron transfer from the valence to the conduction band
PDF
Album
Full Research Paper
Published 23 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • particles dispersed inside the structure of the hydrogel (75–90 mV/dec) (Figure 5c). Depending on the potential applied and the process condition, the water oxidation could be a one to four electron transfer process [57][58]. Tafel slope values in the range of 75–90 mV·dec−1 represent a possible mixed
  • mechanism (two or three electron transfer processes), with a strong influence of two electron transfers. Comparing the value of the Tafel slope of the hydrogel composite containing MCO and cCB particles with the Tafel slope of pure hydrogel (141 mV·dec−1), it is visible that the addition of the catalyst
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • properties of ZnO nanostructures, such as bandgap or conductivity [26]. Decorating ZnO with metals such as Ag, Au, Pd, Pt, and Al [27][28] can provide surface plasmonic effects that assist the electron transfer process in materials and extend the light absorption range of a photodetector [29][30]. However
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • scale was calibrated using a flow of SF6 gas through the oven that produced the well-known SF6− resonance near 0 eV. The measurements were performed without the presence of the calibration gas, avoiding potentially unwanted reactions such as dissociative electron transfer with the investigated molecules
PDF
Album
Full Research Paper
Published 26 Sep 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • the nanoscale metal particles served as an absorbent of dyes and BH4− ions. Subsequently, an electron transfer process occurs from BH4− (electron donor) to the dyes (electron acceptor) (Figure 6). As a result, the catalytic efficacy of metal NPs is significantly influenced by factors such as the
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • use of graphene and its derivatives is widespread for electrochemical detection since 2D graphene sheets provide numerous electrochemical sites for the detection of target molecules, while electrons in the sp2-hybridized pz orbital have a faster electron transfer rate, which enhances response time and
  • [FeIV(CN)6]2− as reported in [39]. As a result of the modification with GQDs, electron transfer was improved, resulting in a higher peak current and an electron-conducting channel on the modified electrode, showing an increase in peak current from 0.037 to 0.39 mA. Effect of scan rate Figure 7b shows
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • limit of detection for SMZ is 0.655 μM, and the Ln-MOF luminescence is strongly quenched, with a quenching constant of 4.60 × 104 M−1. They proposed two potential mechanisms for quenching (inner-filter effect and electron transfer). The overlap between the antibiotic’s absorption spectrum and the Ln
  • -MOF’s excitation/emission spectrum is thought to be the cause of the inner-filter effect, as shown in Figure 7. The second process was linked to an electron transfer from the L-MOF’s conduction band to the antibiotic’s lowest unoccupied molecular orbital. In a related study, Zhang et al. [43
  • on IFE was responsible for the tetracycline-induced fluorescence quenching. Photoinduced electron transfer (PET): PET is an excitation-induced electron transfer between analytes (electron acceptors) and a fluorophore (an electron donor). Typically, PET results in photoquenching due to an internal
PDF
Album
Review
Published 01 Jun 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • a strong crystal field) [28][29]. The shape of the XAS spectra (Ni edge) indicates a similar type of oxides in the structure of the catalysts. The addition of GO to NiFe and CoNiFe intensified both the nickel and iron L3 edge peaks, indicating partial electron transfer from nickel and iron to the
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • through energy transfer to molecular oxygen [21]. Chong et al. claimed that superoxide anions are involved in the generation of singlet oxygen, implying that electron transfer is an intermediate step for the generation of singlet oxygen by photoexcited graphene quantum dots [20]. In nitrogen-doped
  • −polyoxypropylene−polyoxyethylene Pluronic 68 generate singlet oxygen through energy transfer to molecular oxygen [21]. But CQDs prepared from o-phenylenediamine do not generate singlet oxygen or OH radicals through energy or electron transfer, because the condensation process of these dots includes NH2 groups in
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • projection α at a point x, m is the electron mass, and μ is the chemical potential, is the Hamiltonian of a superconducting electrode with the order parameter Δ and the terms account for electron transfer through the junctions between the superconductor and the normal leads. In Equation 4, the surface
PDF
Album
Full Research Paper
Published 09 Jan 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • by Chelkowska et al. [36]. The TFG model includes the following reactions: The reaction in Equation 6 shows that the ozone decomposition process is initiated by hydroxy anions. Two-electron transfer of the oxygen atom produces the –OOH anion, which is necessary for the generation of hydroxyl radicals
  • higher than the bandgap energy generates holes and electrons, which, after moving to the catalyst surface, may participate in redox processes. In a basic medium, the photocatalytic process may proceed by oxygen reduction at the surface of the particles (electron transfer only) [37]. A similar electron
  • transfer can occur during the adsorption of organic compounds on magnetite. In the presence of adsorbed aryl halogenated compounds on the catalyst surface, the accumulated electrons are available to activate carbon–halogen bonds via dissociative electron transfer [38][39]. The electron from the catalyst
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • cyclic voltammograms show that incorporating TiO2 with the MWCNTs leads to a decrease in the electrical double layer, thereby facilitating the electron transfer rate in the TiO2@MWCNTs electrode. Moreover, the current density of the photoelectrochemical electrode formed by TiO2@MWCNTs under solar
  • thick electrical double layer (EDL) [33]. However, incorporating TiO2 onto the MWCNTs leads to a decrease of the EDL, increasing the electron transfer rate in the TiO2@MWCNTs electrode [34]. Puthirath et al. proved that the EDL has a significant influence on the hydrogen evolution reaction of the
  • electrode [35]. Based on the cyclic voltammetry results, it could be suggested that the TiO2@MWCNTs electrode is superior regarding photoelectrochemical application compared to TiO2 and MWCNTs electrodes. Electrochemical impedance spectroscopy (EIS) is applied to characterize the electron-transfer property
PDF
Album
Full Research Paper
Published 14 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • large surface area, high electrical conductivity and electron transfer rate, and it can immobilise diverse molecules, which is ideal for biosensor design [37][38][42]. On the other hand, AuNPs offer outstanding characteristics such as biocompatibility, conductivity, catalytic efficiency, density, and
  • which accelerated the electron transfer rate of [Fe(CN)6]4−/3−. The DPV of SPCE modified with the AuNPs/Gr nanocomposite exhibited the highest peak current in 2.0 mM K4[Fe(CN)6] compared to that of the bare surface of SPCE (Figure 3c). The DPV peak current values for AuNPs/Gr, AuNPs, and Gr electrode
  • surfaces were 31.55, 26.36, and 26.21 mA, respectively. This finding proves that the AuNPs/Gr nanocomposite is suitable for electrochemical analysis and enhances the electrocatalytic activity by facilitating electron transfer in the redox process [54]. Bare SPCE and modified SPCE surfaces were examined
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • MBN-80 thus demonstrates the enhanced electrochemical performance and lower charge transfer resistance. This mainly means an enhanced electron transfer from MBN-80 for a favourable visible light photocatalysis. Additionally, the capacitance of the electrical double layer generated at the semiconductor
PDF
Album
Full Research Paper
Published 22 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • is shown in Figure 6b. From this, the average lifetime (τs) of AZGSSe/TiO2 was found to be 18.92 ns. Then the rate constant (Keff) of the electron transfer is calculated to be 2.9 × 107 s−1 from the equation: where τ(AZGSSe/TiO2) is the average electron lifetime of AZGSSe/TiO2 and τ(AZGSSe QDs) is
  • the average electron lifetime of AZGSSe QDs [34]. Figure 6c shows the PL emission spectra of the AZGSSe/TiO2 NF-based photoanode in comparison with TiO2 NFs. It reveals that the PL intensity of AZGSSe/TiO2 NFs is quenched. This is due to the enhanced electron transfer from the conduction band of
  • AZGSSe QDs to TiO2 NFs with minimized charge recombination rate [35][36][37]. PV cell studies The electron transfer mechanism of the fabricated QDSC was examined by using impedance analysis. The impedance spectrum plotted in the form of a Nyquist plot (Figure 7) was fitted with the equivalent circuit
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • carriers, and SPRs enhanced the ability to absorb visible light. The photocatalytic activity of Bi(M) was further enhanced by the exposure of (010) facets (Figure 4a). Bi5+ reduced the bandgap of BiOBr, which led to an increase in the density of carriers. Examining electron transfer channels and
PDF
Album
Review
Published 11 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • typical hydrogen bonds with the amino acid residues of SA molecules. Based on the QCM responses of naproxen (Nap) recognition on the BSA selector layer, Guo et al. studied the chiral adsorption forces by cyclic voltammograms (CVs) [33]. The result showed the formation of a larger electron transfer
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • Wang et al. also provides a valuable explanation and deeper understanding of solid–liquid interactions. Compared to the traditional model, Wang’s model suggests that electron transfer between liquid molecules and solid surface atoms is the initial step and is followed by ion transfer due to electronic
  • have superior electrical conductivity and provide better electron transfer properties. Organic nanomaterials are complementary to inorganic nanomaterials in terms of physical properties. Although organic nanomaterials are usually poor in electrical conductivity, they have better properties in terms of
PDF
Album
Review
Published 25 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • experiment and electron spin resonance (ESR) experiment suggest that the electron transfer path between Bi2O3 and MIL101(Fe) accords with the Z-type transfer mechanism. The possible photocatalytic degradation pathways were investigated via the analysis of the intermediate products in the degradation process
  • /MIL101(Fe) heterojunctions can result in more effective electron–hole pair separation, higher interfacial electron transfer rate, and thus weakened charge transfer resistance, which may facilitate the improvement of Bi2O3/MIL101(Fe) photocatalytic activity. Photocatalytic degradation of chlortetracycline
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • slow reaction rates of the electrode processes impede the efficiency and, thus, require innovative catalyst designs. The ORR is an irreversible, complex (involving multiple steps and intermediates O, OH−, O2−, HO2− and H2O2) and kinetically slow process (via two- or four-electron transfer) dominating
  • attributes include high electrical conductivity, cost-effectiveness (50 times lower than Pt), and the ability to execute the ORR via a single step (four-electron transfer). Thus, Ag and its bi- and trimetallic alloys, with and without supporting matrices, have been extensively researched as potential ORR
  • electrodeposition. Among the combinations, the Ag–Cu (3:1) alloy showed the better electrode catalytic activity and the highest onset (0.85 V vs RHE) and half-wave potential (0.76 V vs RHE) with a limiting current density of 4.19 mA·cm−2, along with an electron transfer value of 3.86 in 0.1 M KOH [21]. Linic and co
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • support this electron transfer from pyrene-modified molecules to graphene as the binding mechanism in π–π interactions between such compounds [35][36][37]. The association of pyrene-modified ZIKV60 aptamers with graphene may also be mediated by charge transfer that assists the interaction between the
  • pyrene moiety of ZIKV60 and the π orbitals of graphene [38][39]. Consequently, the electron transfer to graphene after functionalization reveals a factual immobilization of ZIKV60 aptamers on its surface. Similar results were obtained for four additional graphene devices. See Figure S4 (Supporting
  • protein-rich environments. From 0.01 to 100 pg/mL, the graphene transfer curve left-shifts successively as a result of progressive additions of five specific protein dilutions. This denotes a cumulative electron transfer to graphene as NS1 binds to ZIKV60. However, this trend is interrupted at the cutoff
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022
Other Beilstein-Institut Open Science Activities