Search results

Search for "etching" in Full Text gives 324 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • surface. The samples were produced in a two-step molding process [20] (see Experimental section) and were based on silicon surfaces with micro-pillars structured by reactive ion etching (RIE). Tegotop® was applied as a superhydrophobic coating. Figure 3a shows an SEM image (top view) of the final epoxy
  • -pillar samples The master for the epoxy resin samples used in this study was a silicon wafer covered with micrometer-scale structures created by reactive ion etching (RIE), which were ordered from the Center of Advanced European Studies and Research (Caesar) in Bonn, Germany. The structures were
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • along with supersaturation of the carbon source and a simultaneous etching process by nascent hydrogen [21][22][23][24][25]. Based on the experimental observations, a phenomenological four-stage model was proposed [24]. In the plasma-assisted growth of carbon nanostructures, the hydrocarbon precursor
  • energetic ions and chemical etching [52]. However, the mechanisms of the growth and the formation of the final chemical structure and morphology of the VGNs were not explained. Therefore, the scope of the present investigation is to optimize the plasma process parameters and relate them with the morphology
  • this study, NG structures were not observed below 600 °C and this is explained by adverse etching of graphene by hydrogen radicals in the plasma, which dominates over the graphene growth at lower temperatures [46]. Figure 1c shows the vertical sheets nucleated from the grain boundaries. This is
PDF
Album
Full Research Paper
Published 10 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • , namely charge trapping caused by mechanical bending [33]. In another work, ultra-thin Parylene C insulating layers were fabricated on Au gate electrodes by reducing the parylene film thickness to 18 nm with the help of oxygen plasma etching [33]. This procedure enabled the manufacturing of OFET devices
PDF
Album
Review
Published 28 Jul 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • uniformity with reduced array-to-array variation [19]. Vapor-phased plasma polymerization to prepare polyacrylic acid has also used to pattern and functionalize microfluidic devices based on wet and dry etching techniques [20]. Combining plasma polymerization and lithographical processes has also been used
PDF
Album
Review
Published 04 Jul 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • selective hydrofluoric acid (HF) etching was used, which leads to pure carbon tubes. Due to their high surface area and porous nature, the carbon tubes are an interesting material for gas storage applications. Consequently, high pressure gas adsorption studies of carbon dioxide were carried out on this
  • after the etching steps. Physical characterisation methods Nitrogen adsorption–desorption isotherms were measured at 77 K with a Nova 3000e (QuantaChrome) instrument after sample pretreatment at 250 °C for 18 h. The specific surface area was calculated by the Brunauer–Emmett–Teller (BET) equation from a
  • transformed into carbon. If the silica shell is removed by etching, self-supporting carbon tubes 4 remain (Figure 2d). Due to the carbonization of the molten PS, the remaining carbon forms an interconnected porous carbon framework structure which allows the infiltration of the etching solution. Silicon
PDF
Album
Full Research Paper
Published 24 May 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • the ex situ transfer by reinforcing the graphene layer with a polymer film, e.g., poly(methyl methacrylate) (PMMA), and etching off the Cu growth substrate. There are several options for subsequent graphene deposition onto the final substrates discussed in [19] (Figure 1). Focusing on wafer-level
  • methods are using a catalytic metal layer, one approach is the in situ removal of the metal layer between graphene and dielectric substrate by wet etching. In order to attach the graphene film to the substrate an additional adhesion mechanism has to be involved. One approach is the use of capillary forces
  • carbon dissolves in Ni with a substantial solubility and during cooling down it segregates to the Ni–substrate interface where it precipitates as graphene. After etching off the nickel, the graphene film is exposed. The complete process sequence is shown in Figure 2 [29]. By choosing the appropriate
PDF
Album
Review
Published 15 May 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • , high-resolution lithography techniques – such as electron beam lithography (EBL) or laser interference lithography (LIL) – with a conventional multistep etching process on a silicon wafer are still required to fabricate templates with nanostructured surface topographies that determine the features of
PDF
Album
Letter
Published 12 May 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • throughout the whole fabrication process: after CVD growth, after Mo etching and after lift-off. The absence of contamination has then been attested by EDX analysis. In Figure 1 a representative optical micrograph of the fabricated devices is reported. The graphene layer (dark strip highlighted in red) and
  • of graphene down to micrometre-size dimensions. A photo-lithographic process, combined with SF6 dry etching, has been used to shape the Mo in the desired form. Graphene layers have then been grown on pre-patterned Mo/SiO2/Si substrate by means of AIXTRON BlackMagic Pro equipment, setting the
PDF
Album
Full Research Paper
Published 08 May 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • ) that we will use in the SIE picture. Here, we are using the notation that , where and are unit vectors along the x and y directions. Since many patterning techniques, including ballistic deposition processes (such as molecular beam epitaxy or IBS) or plasma etching, are characterized by dynamic
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase
  • organic component in an organosilicate induced by the plasma etching and ashing processes utilized to transfer lithographically defined features into these materials [32]. Likewise, we have also recently demonstrated the ability of CR-AFM to resolve nanoscale variations in the mechanical stiffness of
  • layer and a hard mask. Standard 193 nm immersion lithography and etching techniques were utilized to form a grid pattern in the first backbone layer. A spacer dielectric was then deposited over the backbone grid and the backbone material was selectively removed. Standard plasma-etching techniques were
PDF
Album
Full Research Paper
Published 13 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • generates subsequent back-scattered (BSE), forward-scattered (FSE), and secondary electrons (SE). Conveniently, EBID has the advantage of being compatible with a wide range of precursor and substrate materials [12]. Several applications have been explored with EBID and focused electron beam induced etching
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Surface improvement of organic photoresists using a near-field-dependent etching method

  • Felix J. Brandenburg,
  • Tomohiro Okamoto,
  • Hiroshi Saito,
  • Benjamin Leuschel,
  • Olivier Soppera and
  • Takashi Yatsui

Beilstein J. Nanotechnol. 2017, 8, 784–788, doi:10.3762/bjnano.8.81

Graphical Abstract
  • have developed a near-field etching technique that provides selective etching of surface protrusions, resulting in an atomically flat surface. To achieve finer control, we examine the importance of the wavelength of the near-field etching laser. Using light sources at wavelengths of 325 and 405 nm
  • , which are beyond the absorption edge of the photoresist (310 nm), we compare the resulting cross-sectional etching volumes. The volumes were larger when 325 nm light was employed, i.e., closer to the absorption edge. Although 405 nm light did not cause structural change in the photoresist, a higher
  • reduction of the surface roughness was observed as compared to the 325 nm light. These results indicate that even wavelengths above 325 nm can cause surface roughness improvements without notably changing the structure of the photoresist. Keywords: near-field etching; organic photoresists; surface
PDF
Album
Full Research Paper
Published 05 Apr 2017

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • transfer method with copper foil etching in ammonium persulfate was used. After the transfer graphene membranes are cleaned by annealing at 400 °C in hydrogen/argon atmosphere (900 sccm/100 sccm) for 60 min. As a result clean freestanding graphene membranes are obtained [14][15]. As a first step
PDF
Album
Full Research Paper
Published 23 Mar 2017

Silicon microgrooves for contact guidance of human aortic endothelial cells

  • Sara Fernández-Castillejo,
  • Pilar Formentín,
  • Úrsula Catalán,
  • Josep Pallarès,
  • Lluís F. Marsal and
  • Rosa Solà

Beilstein J. Nanotechnol. 2017, 8, 675–681, doi:10.3762/bjnano.8.72

Graphical Abstract
  • -defined topographical and chemical cues to assess cell micropatterning [12][13][14][15][16]. Some of these approaches are based on photolithography and reactive ion etching that in some cases are followed by anisotropic etching [17]. A simple and effective geometry previously described, involves line
  • silicon substrates To study the cellular response on surfaces with different geometry, different grooved substrates were produced in silicon wafers using standard photolithography and wet etching techniques [35][36]. The etching time in tetramethylammonium hydroxide (TMAH) was varied in order to generate
  • ). After developing the photoresist by immersing the wafer in the metal ion free developer AZ 726 (MicroChemicals) for 45 s, the lithographic pattern is transferred onto the oxide layer by etching the silicon in buffered hydrofluoric acid. The photoresist film is no longer needed and therefore removed with
PDF
Album
Full Research Paper
Published 22 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • -free graphene by reactive ion etching. At the same time, the response to NO2 gas increased only by 33% [31]. We would like to point out that the graphene sensors functionalised by PLD with Ag and ZrO2 in our previous work [14] showed a much larger response to 1 ppm NO2 than to 20 ppm NH3 (see Table 1
PDF
Album
Full Research Paper
Published 07 Mar 2017

Liquid permeation and chemical stability of anodic alumina membranes

  • Dmitrii I. Petukhov,
  • Dmitrii A. Buldakov,
  • Alexey A. Tishkin,
  • Alexey V. Lukashin and
  • Andrei A. Eliseev

Beilstein J. Nanotechnol. 2017, 8, 561–570, doi:10.3762/bjnano.8.60

Graphical Abstract
  • selective metal dissolution in 0.5 M CuCl2 (5 vol % HCl). Subsequently, the pore bottoms were opened by chemical etching in 25 wt % H3PO4 aqueous solution at 25 °C followed by electrochemical detection of the pore opening [28]. To increase on the first step membrane stability, high-temperature dehydration
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2017

Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

  • Massimiliano Lucci,
  • Ivano Ottaviani,
  • Matteo Cirillo,
  • Fabio De Matteis,
  • Roberto Francini,
  • Vittorio Merlo and
  • Ivan Davoli

Beilstein J. Nanotechnol. 2017, 8, 539–546, doi:10.3762/bjnano.8.58

Graphical Abstract
  • processes for defining patterns on NbN thin films are typically based on ion etching and subsequent deposition of insulating layers [9][10][11]. We have tried to limit our fabrication recipe instead to minimal procedures, namely just lift-off lithography and selective anodization. By using lift-off
  • lithography aggressive and high-energy etching processes such as ion milling and reactive ion etching (RIE) can be avoided. The use of anodization can reduce the number of mask and photolithography steps. In particular, it is not necessary to deposit further insulators to separate different metals in
  • bath at 4.2 K. Equipment The sputtering system used in our experiment is a commercial Leybold sputtering system equipped with two 4 inch dc and rf magnetron sources and one etching source. A flux meter controls the inlet for N2 and Ar. Finally, a rotatable disk plate holds several substrates in the
PDF
Album
Full Research Paper
Published 02 Mar 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • using direct laser writing and reactive ion etching techniques (Method 2 described in the Experimental section). The window with a diameter of 3 mm and height of 0.05 mm was fabricated in the SU-8 photoresist. In order to observe fabrication and operation of the copper transistor in situ, a ceramic
  • photoresist film using direct laser writing (DWL 66, Heidelberg Instruments, Germany), and then developed. Reactive ion etching (RIE, Plasmalab100, Oxford Instruments, UK) was used to etch the Cr/Au film in the developed areas (120 W, 30 sccm Ar, 10 mTorr, 30 min) in order to isolate the microelectrodes from
PDF
Album
Full Research Paper
Published 01 Mar 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • further to 8–10 nm over 15 min. The size reduction is attributed to etching by TMAH [35], which exposes favorable crystal planes. The (002) plane is possibly exposed because of this etching. Cobalt nanoparticles in the size range of 8–10 nm are superparamagnetic. Magnetic interactions are therefore absent
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • approach, namely the lift-off method, allows a structured layer to be defined without direct chemical/physical etching of the patterned layer. This completely avoids incomplete or over etching, resulting in a step profile which corresponds to the patterned layer thickness. It should be noted that this
  • large area (100 mm diameter) of the target substrate by a PMMA-assisted wet transfer procedure and patterned by soft O2 plasma etching. Figure 4a shows the tAFM morphology of graphene. The typical, wrinkled morphology of CVD-synthesized graphene [13] is less evident on PEN substrates compared with
PDF
Album
Full Research Paper
Published 20 Feb 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • advantageously used for all other thin-film solar cells. So far, a wide diversity of methods have been used for the preparation of ZnO nanocolumns such as metal organic chemical vapor deposition (MOCVD) [11], electrochemical deposition [12], sputtering [13], reactive ion etching [5] and the hydrothermal method
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • enhanced high power performance of the obtained Si anode. Results and Discussion The X-ray diffraction patterns shown in Figure 1a proved that the product was Cu(OH)2 (JCPDS 13-0420) after electrochemical etching of Cu. The thermal treatment transformed the Cu(OH)2 completely into CuO (JCPDS 05-0661). From
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Optical and photocatalytic properties of TiO2 nanoplumes

  • Viviana Scuderi,
  • Massimo Zimbone,
  • Maria Miritello,
  • Giuseppe Nicotra,
  • Giuliana Impellizzeri and
  • Vittorio Privitera

Beilstein J. Nanotechnol. 2017, 8, 190–195, doi:10.3762/bjnano.8.20

Graphical Abstract
  • nanoplumes studied by measuring dye degradation in water. Nanoplumes were synthesized by peroxide etching of Ti films with different thicknesses. Structural characterization was carried out by scanning electron microscopy and transmission electron microscopy. We investigated in detail the optical properties
  • ). Unfortunately, the synthesis of this remarkable material requires high pressures of H2 (up to 20 bar) and long annealing treatments (up to 5 days). Our group investigated the possibility to synthesize black TiO2 by an easier method [20]. In 2016 we employed, for the first time [21], hydrogen peroxide etching of
  • of methylene blue (MB). The obtained results show that TiO2 nanoplumes act as effective antireflective layer increasing the UV photocatalytic yield. Results and Discussion In order to observe the morphology of the films we analyzed the Ti samples after different etching times by SEM in plan view. Two
PDF
Album
Full Research Paper
Published 18 Jan 2017

Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

  • Rachela G. Milazzo,
  • Antonio M. Mio,
  • Giuseppe D’Arrigo,
  • Emanuele Smecca,
  • Alessandra Alberti,
  • Gabriele Fisichella,
  • Filippo Giannazzo,
  • Corrado Spinella and
  • Emanuele Rimini

Beilstein J. Nanotechnol. 2017, 8, 183–189, doi:10.3762/bjnano.8.19

Graphical Abstract
  • shown quite interesting applications in the fields of Si nanowire (SiNW) catalysis [1][2][3], metal-assisted etching (MAE) [4] or even as electrical contacts in standard miniaturized devices [5]. Their ability to display enhanced surface plasmon resonance (SPR) at optical frequencies makes them
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2017

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • consists of mechanical exfoliation, which imposes severe mechanical, uncontrolled defects in the sample. The most common and preferable is the wet-chemical etching of the catalyst (substrate). Usually a poly(methylmethacrylate) (PMMA) scaffold is applied to coat the graphene surface and support it during
PDF
Album
Full Research Paper
Published 16 Jan 2017
Other Beilstein-Institut Open Science Activities