Search results

Search for "gap" in Full Text gives 671 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • easily observable. This indicates that the cyanobacteria encapsulated in yolk–shell microstructures, instead of being directly attached to an inorganic surface, are floating separated by a space between cell wall and silica shell. This gap is crucial to alleviate the previously observed stress
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • -surface synthesis; Review Introduction Nanotechnology is a game changer that has innovated the course of scientific research. Nanotechnology innovations have unlocked mysteries at the nanoscale [1][2][3]. These research innovations have bridged the gap between nanoscale basic science and materials
  • tip was brought close enough to obtain a single-atom conductance gap, it was retracted and silicon atoms were removed. A perpendicular magnetic field was applied to explore physical phenomena such as Kondo resonance. The nanoarchitectonics of magnetic topological states due to spin polarization in
PDF
Album
Review
Published 03 Apr 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • the treatment of a vast number of diseases including cancer and neurological diseases. Continuous effort in the field of designing novel polymeric nanoparticle-based formulations might contribute to reduce the existing gap between preclinical and clinical models. This extensive research might overcome
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • (CNS), where endothelial cells form the tightest and the most selective blood–brain barrier (BBB) that provides protection against the penetration of harmful substances and pathogens. Other types of connections include adherens junctions, maintained primarily by transmembrane VE-cadherin, and gap
  • achievable utilizing NPs less than 100 nm in diameter. In contrast, active targeting strategies involve functionalizing the NP surface with appropriate ligands specific for receptors overexpressed by the cancer cells (e.g., folic acid and transferrin). The combination of the paracellular gap size resulting
  • actin remodeling process with Y27632 (10 μM) significantly reduced the gap formation induced by Au NPs (white arrowheads). Green and blue fluorescent signals represent the VE-cadherin and nucleus, respectively. Scale bar: 50 μm. Figure 4 was reprinted with permission from [33], Copyright 2017 American
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • inactivate pathogens. The term “photocatalysis” refers to chemical reactions that use light and a photocatalyst (basically a semiconductor). A few of the requirements that an effective photocatalyst system should satisfy include high sunlight absorption, an appropriate gap (1.5–2.8 eV), long-term charge
  • semiconductors are connected, heterojunctions can be divided into three types, namely type-I staggered gaps, type-II straddling gaps, and type-III broken gaps. In a broken gap, the bands do not overlap whereas in a staggered gap, the bandgaps of two semiconductors overlap and may cause band discontinuity. The
  • straddling gap heterojunction system is recognised as the standard heterojunction system where the band edges of one semiconductor are lower than those of the second semiconductor [119][156]. The conduction band position of semiconductor Y is highly negative relative to semiconductor X in type-II
PDF
Album
Review
Published 03 Mar 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • effect. It gives rise to the spin distribution of quasiparticles with energies close to the spectrum gap near the interface. Both spin current and induced magnetization in the superconductor originate from the singlet–triplet Cooper pair conversion mechanism, which is the main origin of the inverse
  • quasiparticle distribution function at magnetization precession frequencies of 1 and 8 GHz. The color maps for quasiparticles with x and y spin component evolution Sx,y(z, ε, t) = Tr[σx,yψel] are presented in Figure 4. The spin distribution function splits into two almost symmetric peaks around the spectrum gap
  • noticed that a fraction of the spin distribution is lying inside the gap and should not be taken into account. But in the time-dependent case, there is always an energy shift equal to ±ℏΩ/2. This energy shift appears in every time convolution. The real consequences of these undergap states may be found if
PDF
Album
Full Research Paper
Published 21 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • the sample when high- and low-frequency AC bias voltages are applied. The tip and the sample are assumed to be metallic and semiconducting, respectively, and a metal–insulator–semiconductor (MIS) structure consisting of the metallic tip, a vacuum gap, and the semiconducting sample is considered
  • the semiconductor and the gap, the following equation is obtained: where Cg is the capacitance per unit surface area due to the gap between the tip and the surface. The charge Qs due to the surface potential Vs is obtained by numerically solving Equations 4–8. When a positive or negative bias voltage
  • is applied to the MIS structure consisting of the metal tip, gap, and semiconductor sample, three cases exist at the semiconductor surface. For an n-type semiconductor, when a positive bias voltage is applied to the metal tip (Vdc > 0), electrons (majority carriers) in the semiconductor are attracted
PDF
Album
Full Research Paper
Published 31 Jan 2023

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • JJs, RQP ≫ Rn at sub-gap voltages. I will assume RQP = 25Rn, typical for Nb tunnel JJs [9][11]. This gives RQP = 0.5 Ω and GQP = 2 Ω−1. At f = 400 GHz, ωL* = 8.61 Ω, ωC = 111.2 Ω−1, and ZTL ≃ 0.278 + i0.0015 Ω. It practically coincides with the resistance of an ideal TL, Equation 35. The value of ZTL
PDF
Album
Full Research Paper
Published 26 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • between the positions of pure Au and Ni since only one main reflex should be observed when the two elements are completely mixed [20][23][25]. The annealing temperatures are above the miscibility gap [23][50]. Thus, the partial mixing comes from the phase separation of Au and Ni during cooling [25
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • ] investigated the effects of gap size using a fine tunable mechanical separation as a means to control the intensity of a travelling SPP on silver. In contrast, in the present work, the modulation of the device’s response is obtained through changes in the optical constants via electrical signals. It is well
PDF
Album
Full Research Paper
Published 16 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • the energy gap inside the superconductor, see Figure 1b. Unlike CAR, EC does not produce entangled electrons. In the zero-temperature limit, CAR and EC contributions to the low-bias non-local conductance of an NSN device cancel each other in the limit of low-transparency barriers [4]. In contrast, at
  • the importance of CAR processes in this limit, see also Figure 4. Yet another important physical limit is realized provided the contact has the form of a short diffusive wire with the corresponding Thouless energy exceeding the superconducting gap Δ. In this diffusive limit the transmission
PDF
Album
Full Research Paper
Published 09 Jan 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • candidates for the realization of fast superconducting nanowire single-photon detectors (SNSPDs) [1][2][3][4]. Apart from the reduced values of the superconducting gap and short quasi-particle relaxation times [5], the property that makes these materials appropriate to be used as SNSPDs is the high value of
  • . Accordingly, paramagnetic pair-breaking effects are absent in spin-triplet superconductors. The Pauli limiting field is given by , where Δ(0) is the superconducting energy gap at zero temperature and μB is the Bohr magneton [15]. For weakly coupled BCS superconductors it is Hp(0) [T] ≈ 1.84Tc [K]. In the
PDF
Album
Full Research Paper
Published 05 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • biorecognition arrays or be transferred to the underneath Au layer for metallic structure creation. By combining CLL process with this gap phenomenon, soft material properties that are previously thought as demerits can be used to achieve sub-10 nm features in a straightforward sketch. Keywords: chemical lift
  • -off lithography; gap; self-assembled monolayer; sub-micrometer; surface patterning; Introduction The development of lithographic techniques is crucial to the advancement of the electronics and semiconductor industry, the backbones of modern technology. Advances in photolithography have pushed the
  • placed in the gap between the supporting substrate and a capping layer [43][44][45]. On the other hand, capillary force can induce the formation of nanochannel gaps when a structural top layer is brought into contact with the bottom surface [43]. Through these techniques, structures that are at the
PDF
Album
Full Research Paper
Published 04 Jan 2023

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • conditions, PDP is a wide-gap dielectric material and is characterized by the following parameters: band gap ≈4.3 eV, electronic work function ≈4.2 eV, electron affinity ≈2 eV, first ionization potential ≈6.2 eV. Experimental evaluations of the electronic parameters of PDP have been made earlier by various
  • characterized by non-zero density of electronic states within the energy gap. The depth of such states increases if the system accepts an extra electron (Figure 1b), thus indirectly enabling electric conductivity along the polymer chain [11]. Later the validity of this model was supported experimentally and
PDF
Album
Full Research Paper
Published 19 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • igneous and metamorphic rocks [12]. It is also found in sediments and soils. Magnetite has the smallest energy gap, the highest conductivity, and one of the lowest reduction potentials among natural minerals. It is an important reducer of heavy metals and organic pollutants in aquatic environments. Due to
  • previous publication of ours [19]. The absorption spectra of the catalysts showed noticeable differences (Figure 1b). Using the absorption spectra, the electron gap energies for M1 and M2 were determined to be 0.11 V and 1.75 V, respectively (Table 1) [20]. Phase identification of the magnetite structure
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • spectra of the prepared catalysts are shown in Figure 6b. The optical absorption of TiO2 is in the UV region, while the light absorption edge of TiO2@MWCNTs redshifts to the visible-light region. As seen from the Tauc plots (inset of Figure 6b), the optical band gap of TiO2 and TiO2@MWCNTs catalysts are
  • exhibits poor hydrogen production under sunlight irradiation. It could be explained by the 3.14 eV optical band gap of TiO2, which absorbs only UV light. In addition, the fast recombination of the photogenerated (h+/e−) pairs contributes to the poor photochemical catalysis activity of the TiO2 electrode
PDF
Album
Full Research Paper
Published 14 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • transform an applied constant voltage V into electromagnetic (EM) oscillations. The fundamental Josephson frequency, fJ, is connected to V via the ac-Josephson relation, hfJ = 2eV, where h is the Planck constant and e is the elementary charge. Josephson generation occurs up to the superconducting gap
  • voltage. Therefore, fJ can be up to about 1 THz for low-Tc JJs [1] and can reach tens of terahertz for high-Tc JJs [2][3]. Thus, a JJ has the potential to be the basis of compact, continuous-wave and tunable terahertz generators, which would facilitate solving the problem of so-called “THz gap” [4]. A
  • of the opposite long side. All lumped elements are connected by ideal conductors located at the edges of mesh. The gap between two arrays is 0.1 mm. The JJs are described by the RSJ model [20]. The corresponding equations of junction dynamics are solved self-consistently with Maxwell equations, which
PDF
Album
Full Research Paper
Published 06 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • is well-known [1][2][3][79]. It has a so-called mini-gap at the subgap energies E < Δ (where Δ is the superconducting gap), whose magnitude depends on the NS interface parameters and the thickness of the N layer [79][80]. Replacing the N layer with a ferromagnetic metal F results in a more
  • particular, we can see the evolution of the DOS peaks. For h = 0, that is, for the case of an SN bilayer, we see the well-known DOS structure with the characteristic mini-gap at energies E < Δ (Figure 2a, black dotted line) [79]. This proximity-induced mini-gap originates from the effective backscattering of
  • the quasiparticles at the SN interface due to a finite interface resistance [99]. As h increases, the DOS splits for the spin-up and spin-down electrons, which results in the mini-gap peak splitting. For a certain value of h, the mini-gap closes, resulting in the DOS enhancement at zero energy as seen
PDF
Album
Full Research Paper
Published 01 Dec 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • , which attempts to bridge the gap between biology and engineering (or applied sciences in general). This gap is quite profound: Whereas biologists are interested in organisms, engineers are interested in designing successful technical constructions. Naturally, the aim of an applied science project (a
PDF
Album
Perspective
Published 17 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • . This gap is essential for improving the material’s light-harvesting capabilities [78][79]. Consequently, in an attempt to improve the photocatalytic efficiency for water purification and other environmental applications, a variety of techniques, such as defect formation, metal/non-metal doping
  • , Cl), Br (I). Dong et al. [88] reported the fabrication of boron-doped Bi3O4Cl ultrathin nanosheets via a solvothermal technique, which were found to have enhanced solar absorption and efficient electron–hole separation. The B atoms enhance the photocatalytic performance via (1) producing mid-gap
  • shown in Figure 5a may be used to classify the heterojunctions between semiconductors as either a straddling gap (type I), an uneven gap (type II), or a broken gap (type III). Type-II heterojunctions have garnered the most interest because of the improved photogenerated electron–hole separation they
PDF
Album
Review
Published 11 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • slightly above the melting point of the respective PP type (170 °C in our case). For this temperature the viscosity of the polymer melt was sufficient to enable the hot-pulling process. The second roller of the calender was unheated and had a smooth surface. The gap between the rollers was adjusted to be
  • uniformity over the whole film area. The most important parameter for high-quality nanofur is the gap size between the upper and lower roller. It should be set to a few tens of micrometers below the nominal material thickness; the contact angle is highest if the roller just touches the surface without
  • applying high embossing forces. In this case it was set to 350 µm (the nominal thickness of the PP/COC laminate was 400 µm). Since the polymer laminate has small variations in thickness, a tradeoff must be made between setting the gap at the optimal thickness for maximum contact angle and setting it below
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • cantilever-based AFM offers experimental flexibility by permitting multimodal or multifrequency operations with superior force derivative sensitivities and bandwidths. Our instrument has a sub-picometer gap stability and can simultaneously map not only vertical and lateral forces with atomic-scale resolution
  • noise and measurement bandwidths”, and “STM noise spectrum and tip–sample gap stability measurements”. Finally, various atomic-scale STM and AFM results described in section “Results and Discussion” structured into various subsections demonstrate the performance of our new AFM for such work. The last
  • suspension springs that reach through cylindrical tubes running through the LHe tank and are mounted on top of the tank. Together with the Eddy current damping system mounted at the bottom of the cryostat, this provides excellent vibration isolation such that a tip–sample gap stability better than 1 pm can
PDF
Album
Full Research Paper
Published 11 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • structure for endogenous nitrogen-doping in a green synthesis of CD-based room-temperature phosphorescent (RTP) materials. The materials had lifetimes of up to 271.2 ms with a lower energy gap and 350 nm of excitation (0.32 eV). Furthermore, when iron ions (Fe3+) were introduced, they displayed appropriate
  • though they have the same chemical surface groups and particle size distribution, they both have varying levels of surface oxidation. The emission wavelength moved from 518 to 543 nm as the degree of surface oxidation increased, which gives an indication about the reduction of band gap between LUMO and
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • use carbon nanotubes or carbon quantum dots to modify MIL101(Fe) to enhance its conductivity and broaden its visible-light response [37][38]. Another strategy is to construct MIL101-based heterostructures with the aid of narrow-gap semiconductors to promote the separation and transfer of
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • parameters of the plano-concave microcavity When a polymer layer is added inside a bare microcavity, as in our case, two fundamental Gaussian beams are formed inside the air gap and polymer layer, respectively (Figure 3) [16]. The spotsize W02 (Figure 3) of the fundamental Gaussian mode (TEM00 ) inside the
  • known as the q-parameters for the Gaussian beams, where z2 = L2 − Lp, z1 = L1 and zR,1,2 is the Rayleigh length for each beam. For a Gaussian beam passing through a plane dielectric interface, we have A = B = C = 0, and D = n2/n1, where n1 = 1 is the refractive index of the air gap, therefore, by
PDF
Album
Full Research Paper
Published 27 Sep 2022
Other Beilstein-Institut Open Science Activities