Search results

Search for "grain boundaries" in Full Text gives 137 result(s) in Beilstein Journal of Nanotechnology.

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects. Keywords: cadmium telluride (CdTe); photo-conductive AFM (pcAFM); PV
  • grains present a consistent ISC*, which varies up to three orders of magnitude for adjacent grains (note the log scale). VOC*, on the other hand, is less uniform within a single grain, appearing to vary most strongly at some grain boundaries as well as many seemingly linear features. This type of instant
  • polycrystalline film is relatively rough when considered at the nanometer scale, revealing grains, facets, and grain boundaries with topographic protrusions and depressions as great as ±150 nm. Surface-potential studies of a range of photovoltaics have identified correlations between such features and their
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • conversion efficiencies exceeding 20% and several kinds of optoelectronic devices, including efficient light-emitting diodes [3], laser devices [4] and high-gain photodetectors [5]. Recently, Kelvin probe force microscopy (KPFM) has been used to investigate the impact of grain boundaries (GBs) on the
  • halide perovskite thin films remains a difficult task. Over the last few years single crystals [11][12] have constituted an interesting alternative for basic research on hybrid perovskites. Thanks to the absence of grain boundaries (and noncrystalline domains) they can be advantageously used to probe the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • slide–hold–slide experiments on the time scale of seconds, similar to the development of grain boundaries in the fusion of gold nanoparticles [16]. In our experiments, the holding time before sliding was varied between 252 μs (v = 3.1 μm·s−1) and 100 s. As our system was drifting by only one atomic
PDF
Album
Full Research Paper
Published 05 Jun 2018

Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS

  • Jonathan Op de Beeck,
  • Nouha Labyedh,
  • Alfonso Sepúlveda,
  • Valentina Spampinato,
  • Alexis Franquet,
  • Thierry Conard,
  • Philippe M. Vereecken,
  • Wilfried Vandervorst and
  • Umberto Celano

Beilstein J. Nanotechnol. 2018, 9, 1623–1628, doi:10.3762/bjnano.9.154

Graphical Abstract
  • utilization. The latter could be representative of the known fact that lithium shows a strong tendency to be localized and often is trapped at grain boundaries [13]. However, while C-AFM proves to be very useful to sense the electrical properties of the cathode materials, including the areal distribution and
  • of a potential ion-modulated C-AFM measurement. This can be particularly useful for fundamental studies on the role of materials, grain boundaries and interfaces that provide a low bias induced response. It is important to consider the formation of a thin local oxidized interface at the tip–sample
PDF
Album
Supp Info
Letter
Published 04 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • at identical regions to identify microstructural components such as an AlPO4 secondary phase. We found significantly lower Li-ion mobility in the secondary phase areas as well as at grain boundaries. Additionally, various aspects of signal formation obtained from ESM for solid state electrolytes are
  • grain boundaries with an overall conductivity of 0.2 mS cm−1 [11] and has therefore attracted much research within the last decade [12][13][14][15]. In classical electrochemical impedance spectroscopy (EIS), the ionic conductivity is measured through the entire sample and over the full electrode contact
  • surface features as observed by SEM, providing evidence that both methods can be applied complementary. The same pores as those observed via SEM can be found in the AFM topography image and the topography reveals some preferential etching at the grain boundaries and interfaces. Differentiation between the
PDF
Album
Full Research Paper
Published 28 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • movement along the x–y-axis, and x, y, z-axis respectively. The ability to predict the properties of NMs determines the classification value of the NMs. The properties of NMs strongly depend on the grain boundaries, as mentioned in the “grain boundary engineering” concept in Gleiter's classification
PDF
Album
Review
Published 03 Apr 2018

Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures

  • Susann Liedtke,
  • Christoph Grüner,
  • Jürgen W. Gerlach and
  • Bernd Rauschenbach

Beilstein J. Nanotechnol. 2018, 9, 954–962, doi:10.3762/bjnano.9.89

Graphical Abstract
  • material ρθ=0° and a film thickness tθ=0° (measured parallel to the substrate normal) is forming. This density ρθ=0° does not necessarily equal the bulk density of the material, since the film can contain inner voids, grain boundaries, etc. [25]. Tilting the substrate to an oblique angle θ leads to an
PDF
Album
Full Research Paper
Published 22 Mar 2018

Effect of annealing treatments on CeO2 grown on TiN and Si substrates by atomic layer deposition

  • Silvia Vangelista,
  • Rossella Piagge,
  • Satu Ek and
  • Alessio Lamperti

Beilstein J. Nanotechnol. 2018, 9, 890–899, doi:10.3762/bjnano.9.83

Graphical Abstract
  • the preferential orientation of ceria [8][9][10][11]. Further, the specific conditions of the thermal treatment (i.e., high or low temperature in reactive (O2) or inert (N2) atmosphere) can influence the formation of defects in the crystalline structure, such as grain boundaries, the crystallite
PDF
Album
Full Research Paper
Published 15 Mar 2018

Blister formation during graphite surface oxidation by Hummers’ method

  • Olga V. Sinitsyna,
  • Georgy B. Meshkov,
  • Anastasija V. Grigorieva,
  • Alexander A. Antonov,
  • Inna G. Grigorieva and
  • Igor V. Yaminsky

Beilstein J. Nanotechnol. 2018, 9, 407–414, doi:10.3762/bjnano.9.40

Graphical Abstract
  • important role of the basal-plane surface in the transport of reagents inside the crystals. Eklund et al. [7] noted that sulfuric acid intercalates highly oriented pyrolythic graphite (HOPG) through the basal-plane surface, where the penetration sites are probably grain boundaries, microcracks and atomic
  • the treatment. Grain boundaries within the ordered regions have a well-organized structure [19], and, in our assumption, they do not permit the diffusion of the reagents inside the material. Line-shaped blisters were found along the grain boundaries (Figure S3, Supporting Information File 1) after the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • explained as follows: currently, large area graphene can be prepared by the CVD technique; synthesized by this method, graphene has a polycrystalline nature. Processes occurring at the grain boundaries of polycrystalline graphene as, for example, charge carrier scattering and mechanical stress, result in
PDF
Album
Review
Published 25 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • with a size smaller than 6–9 nm consisted of small crystallites with coherent (twinned) or semi-coherent grain boundaries. The interplanar distances estimated from the fast Fourier transform (FFT) patterns (Figure 2c and 2f, insets) were d = 0.231 nm and d = 0.205 nm. These distances well correspond
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • . In particular, the size of the metal agglomerates of all deposits was estimated from high-magnification SEM images (see Figure 1), using ImageJ software applying a fast Fourier transform (FFT) bandpass filter to enhance grain boundaries and a contrast-threshold algorithm to calculate the agglomerate
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Growth model and structure evolution of Ag layers deposited on Ge films

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Ewa Górecka,
  • Jakub Kierdaszuk and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2018, 9, 66–76, doi:10.3762/bjnano.9.9

Graphical Abstract
  • ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge–Ge bonds are still present. Keywords: germanium; segregation; self
  • atoms present in the Ag grain boundaries are individual atoms or small clusters, Raman spectra of Ge wetted, 20 nm thick Ag layers were recorded immediately after deposition as well as 10 days later. To avoid corrosion, all samples were capped with a 3 nm thick LiF overlayer, except the ones measured
  • surface. With the increased number of grains, the surface of the grain boundaries and volume of voids also increases. As hypothesized in [4], Ge atoms located in the silver grain boundaries or in the voids have lower free enthalpy than Ge atoms at the SiO2/Ag interface. The increased number of grain
PDF
Album
Full Research Paper
Published 08 Jan 2018

Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries

  • Shih-Wei Liang,
  • Ren-Zheng Qiu and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2017, 8, 2283–2295, doi:10.3762/bjnano.8.228

Graphical Abstract
  • Shih-Wei Liang Ren-Zheng Qiu Te-Hua Fang Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan 10.3762/bjnano.8.228 Abstract The dynamic nanomechanical characteristics of Cu films with different grain boundaries under nanoindentation and
  • work, we analyzed the transverse and vertical grain boundaries for different angles. From the simulation results, it was found that the sample with a transverse grain boundary angle of 20° had a higher barrier effect on the slip band as compared to samples with other angles. Moreover, the
  • conditions using MD simulations. However, the nanomechanical properties of the different types of grain boundaries have been scarcely studied using MD simulations. Therefore, the study of the potential fracture of substrates upon mechanical pressure as a result of the different grain boundaries is of
PDF
Album
Full Research Paper
Published 01 Nov 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • this study, NG structures were not observed below 600 °C and this is explained by adverse etching of graphene by hydrogen radicals in the plasma, which dominates over the graphene growth at lower temperatures [46]. Figure 1c shows the vertical sheets nucleated from the grain boundaries. This is
  • crystallinity to facilitate grain growth in nanocrystalline materials. This trend, clearly shown in Figure 3c, implies that the initial growth of the vertical sheets can be attributed to the relaxation of stress that starts at grain boundaries of NG islands. The higher growth rates at high temperature could be
  • with growth temperature suggests that the intrinsic electric field plays a major role in the pronounced vertical growth compared to the effects of stress released at grain boundaries at higher temperature. It is also shown that the morphology (from planar to vertical networks) wetting, and structural
PDF
Album
Full Research Paper
Published 10 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • threshold voltage can be controlled. This effect is mainly attributed to the mechanism of charge trapping at grain boundaries [52]. It was also found in further studies that the growth of C60 on the surface of Parylene C at elevated substrate temperatures leads to the creation of radicals at the interface
  • of grain boundaries by the smoothness of the BCB layer. However, it only works when Parylene C/BCB bilayer system is used. By applying a bilayer encapsulation system, the defects in the Parylene C film underneath are blocked by the BCB layer. The permeation path for water vapor and oxygen becomes
PDF
Album
Review
Published 28 Jul 2017

Formation of ferromagnetic molecular thin films from blends by annealing

  • Peter Robaschik,
  • Ye Ma,
  • Salahud Din and
  • Sandrine Heutz

Beilstein J. Nanotechnol. 2017, 8, 1469–1475, doi:10.3762/bjnano.8.146

Graphical Abstract
  • with their long axis measuring up to 10 µm. X-ray diffraction studies show that the out-of-plane dimensions of the grains (84 ± 9 nm) are comparable to the target film thickness of 100 nm, which means that no grain boundaries parallel to the substrate plane are expected. Magnetic measurements reveal
PDF
Album
Full Research Paper
Published 14 Jul 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • through the walls. These oxygen species might also diffuse through the oxidized metal and the grain boundaries existing in the metal film [10]. In any case, the thinner the shell, the larger the amount of reactive oxygen species able to penetrate into the cage. Further investigations into the thin-shell
  • could be considered to form the nanocages. For example, sputtering could be used to create nanometer-thick amorphous or polycrystalline films, which are expected to have pores (voids) and diffusion paths (grain boundaries). Note, however, that the sputtering technique typically leads to highly conformal
PDF
Album
Full Research Paper
Published 08 Jun 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • temperature profile and C/Ni ratio the number of graphene layers can be controlled. However, process control is difficult and Ni grain boundaries can lead to an inhomogeneous thickness distribution of the graphene layer. A similar approach utilizes the diffusion of carbon species from a CVD atmosphere along
  • grain boundaries through a copper film to the underlying substrate [30]. As there is no significant solubility of carbon in copper, the film formation is expected to be very inhomogeneous. Alternatively Cu is used as catalytic material to convert a self-assembled monolayer as carbon source at the Cu
  • growth substrate, preferably using etch-free methods due to high substrate cost [32], is an interesting option. 2 Intrinsic properties The quality of the graphene material itself is a result of the growth and transfer process and can be influenced by several intrinsic properties. 2.1 Grain boundaries One
PDF
Album
Review
Published 15 May 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • to resolve, map, and create nanoscale variations in chemical structure and materials properties will be needed to extend Moore’s law of transistor scaling into the single-digit nanometer regime [7][8]. Nanoscale structure–property characterization of grain boundaries and interboundary materials has
PDF
Album
Full Research Paper
Published 13 Apr 2017

Diffusion and surface alloying of gradient nanostructured metals

  • Zhenbo Wang and
  • Ke Lu

Beilstein J. Nanotechnol. 2017, 8, 547–560, doi:10.3762/bjnano.8.59

Graphical Abstract
  • activation enthalpy were measured in the nanostructured Cu synthesized by IGC [14][15][16]. And a comparable diffusivity with that of conventional grain boundaries (GBs) was revealed in a nanostructured γ-Fe–Ni alloy prepared by ball milling with subsequent sintering (BMS), while inter-agglomerate boundaries
PDF
Album
Review
Published 03 Mar 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • of ammonium hydroxide is a significant novelty in the growth of these nanostructures. A high-resolution image of a nanorod shows grain boundaries (Figure 7a) of aggregating nanoparticles and indicates the polycrystalline nature of nanorods. A lattice spacing of 0.20 nm corresponding to the hcp Co(002
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • lengths on the order of ≈100 µm, suitable for solution sensing applications. This channel size poses a challenge considering that the larger the channel dimension, the higher the effect can be on the device performance due to the material defects (e.g., graphene cracks and grain boundaries, surface
PDF
Album
Full Research Paper
Published 20 Feb 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • observed that when the substrate or the Cu film is exposed to air, the agglomeration is hindered [34]. Such retardation in copper agglomeration is caused as the oxidation in the grain boundaries retards the diffusion in the grain boundaries and also affects the grain boundary grooving [34][36][37]. Again
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

  • Nina J. Blumenstein,
  • Fabian Streb,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Zaklina Burghard and
  • Joachim Bill

Beilstein J. Nanotechnol. 2017, 8, 296–303, doi:10.3762/bjnano.8.32

Graphical Abstract
  • . Thus, in order to obtain reliable data, we chose the intermediate thickness range on the order of 300 nm. For RF-magnetron-sputtered ZnO films it was reported, that thicker films in the range of 1 µm show an increasing piezo-activity [45]. This trend may arise from a lower density of grain boundaries
  • and a larger crystal size, both of which are achieved by increasing the film thickness. Using our bioinspired growth, the density of the grain boundaries changes only very little with film thickness and therefore it is not necessary to increase the film thickness much above 250 nm in order to achieve
PDF
Album
Full Research Paper
Published 30 Jan 2017
Other Beilstein-Institut Open Science Activities