Search results

Search for "graphene" in Full Text gives 482 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • Karl Rothe Nicolas Neel Jorg Kroger Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany 10.3762/bjnano.15.37 Abstract Low-energy argon ion bombardment of graphene on Ir(111) induces atomic-scale defects at the surface. Using a scanning tunneling microscope, the two
  • smallest defects appear as a depression without discernible interior structure suggesting the presence of vacancy sites in the graphene lattice. With an atomic force microscope, however, only one kind can be identified as a vacancy defect with four missing carbon atoms, while the other kind reveals an
  • intact graphene sheet. Spatially resolved spectroscopy of the differential conductance and the measurement of total-force variations as a function of the lateral and vertical probe–defect distance corroborate the different character of the defects. The tendency of the vacancy defect to form a chemical
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • , and graphene is already in use as a transparent and flexible conductor. However, graphene intrinsically lacks a strong response, and only by engineering defects, such as grain boundaries, one can induce piezoresistivity. Nanocrystalline graphene (NCG), a derivative form of graphene, exhibits a high
  • density of defects in the form of grain boundaries. It holds an advantage over graphene in easily achieving wafer-scale growth with controlled thickness. In this study, we explore the piezoresistivity in thin films of nanocrystalline graphite. Simultaneous measurements of sheet resistance and externally
  • values. For larger strains, mechanisms such as grain rotation and the formation of nanocracks might contribute to the piezoresistive behavior in nanocrystalline graphene. Keywords: grain boundary; nanocrystalline graphene; strain sensor; Raman; tunneling and destruction; Introduction Flexible strain
PDF
Album
Full Research Paper
Published 08 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • ; Introduction The advent of two-dimensional (2D) layered materials beyond graphene has initiated a new field of research [1][2][3]. In the family of 2D layered structures, transition metal dichalcogenides (TMDs) have attracted considerable attention from academia and regarding potential applications [4][5][6][7
  • ][8][9] because of a number of remarkable properties [10][11][12]. Particularly, it was found that the properties of layered TMDs drastically change when their thickness is reduced to a monolayer [13][14]. Layered TMD structures have a graphite-like structure with each graphene sheet replaced with an
  • expected by considering a simple thermal effect. Consequently, the results reported in Figure 2c clearly evidence photo-doping of 1L-MoS2 concomitant with a thermal effect, as already observed for MoS2 on SiO2/Si [45] as well as for graphene [42]. Furthermore, the evolution of the A′1 and E′ widths with Pλ
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • (TiO2, SiO2, and Fe2O3), carbonaceous NPs (graphene, carbon nanotubes, and carbon black), semiconductors (CdSe) [26], and polymers [27], it lacks the set of short-range potentials required for calculating milk protein-aluminum adsorption energies. Here, we compute potentials of mean force (PMF) for Al
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • , Poland Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain 10.3762/bjnano.15.18 Abstract Graphene is one of the most extensively studied 2D materials, exhibiting
  • extraordinary mechanical and electronic properties. Although many years have passed since its discovery, manipulating single graphene layers is still challenging using standard resist-based lithography techniques. Recently, it has been shown that it is possible to etch graphene directly in water-assisted
  • processes using the so-called focused electron-beam-induced etching (FEBIE), with a spatial resolution of ten nanometers. Nanopatterning graphene with such a method in one single step and without using a physical mask or resist is a very appealing approach. During the process, on top of graphene
PDF
Album
Full Research Paper
Published 07 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • , Niigata 940-2188, Japan 10.3762/bjnano.15.16 Abstract Modification of graphene oxide (GO) by vinyltriethoxysilane (VTES) was investigated to study the effect of silanized GO on radical graft copolymerization of GO onto deproteinized natural rubber (DPNR). The modified GO, GO-VTES (a and b), was
  • stress at small strains and higher storage modulus than DPNR/GO. Keywords: graft copolymerization; graphene oxide; natural rubber; vinyltriethoxysilane; Introduction The graft copolymerization of natural rubber (NR) has gained significant interest for an extended period. This interest derives from the
  • NR grafted PS, gaining the best tensile strength at 19.23 MPa. This result highlights the advantage of a nanosilica nanomatrix on the improvement of mechanical properties of NR. On the other hand, graft copolymerization of nanocarbon materials, such as graphene and graphene oxide (GO) [19][20], has
PDF
Album
Full Research Paper
Published 05 Feb 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • appropriate electrical conductivity [22]. Suspension of conductive fillers in the hydrogel structure, such as metallic particles (gold nanoparticles, silver nanoparticles) [23][24][25], carbon-based materials (GO graphene oxide, CNT carbon nanotubes) [26][27][28], and conductive polymers (polyaniline
  • V vs RHE) at 145.3 mA/cm2 for N-doped graphene hydrogels/NiCo in 0.1 M KOH [33]. The electrode double-layer capacitance (Cdl) increased with the increase in cCB particle concentration (Figure 5b). For the pure hydrogel electrode, the double-layer capacitance was equal to 0.03 mF/cm2. The addition of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • nanostructured materials, for example, graphene, carbon nanotubes, nanoscale semiconductors, biomaterials, and molecules. Mechanical properties such as surface stiffness, adhesion, friction, electrostatics, and electrowetting can be measured [1][2][3][4]. In contact mode scanning, the contact area between the
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • experiments are characterized by ABAB (hcp) or ABAC (dhcp) stacking patterns. The hcp surface has been observed experimentally in nanowires [16] and ultrathin sheets on graphene oxide [17]. Nanoribbons with metastable dhcp structure have been also reported [18][19] and were used to grow the dhcp forms of
PDF
Album
Full Research Paper
Published 15 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • Kayhan Dagidir Kemal Bilen Department of Mechanical Engineering, Tarsus University, Mersin, Turkey Department of Mechanical Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey 10.3762/bjnano.14.86 Abstract In this study, the use of nanolubricants containing Al2O3, graphene, and carbon
  • lubricant to determine the optimum nanoparticle mass fraction for each nanoparticle type. Thus, it was found that the compressor operated safely and efficiently with nanolubricants. Furthermore, the optimum mass fractions were determined to be 0.750% for Al2O3, 0.250% for graphene, and 0.250% for CNTs for
  • operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al2O3, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor
PDF
Album
Full Research Paper
Published 02 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • properties, that is, plasmonic materials (e.g., Au, Ag, and Pt), semiconductor materials (e.g., transition metal oxides, transition metal chalcogenides, and transition metal dichalcogenides), carbon-based nanomaterials (such as graphene oxide and carbon nanotubes), and polymer nanomaterials [33][34] (Figure
  • because of their remarkable ability to absorb light across a broad spectrum and their high PCE. The main classes of photothermal carbon-based nanomaterials are carbon nanotubes, graphene-based nanomaterials, carbon quantum dots, and carbon-based composite materials. Among these, carbon nanotubes have the
  • found to be suitable candidates for photothermal applications when irradiated with high-power lasers (100 W/cm2) because of the cage-like structure. This particular carbon allotrope is very stable under NIR light [32]. Graphene-based nanoparticles exhibited better photothermal properties when used with
PDF
Album
Review
Published 04 Oct 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • dramatic growth of 3.46 mmol·g−1 in the amount of absorbed CO2 after the modification, ascribed to the improved pore space by MWCNTs. In another work, MOF/carbon-based composites were reported by Liu and coworkers [40]. The authors used graphene oxides as templates for growing Cu-MOF nanograins for gas
  • storage. A benefit of this strategy was that surface area was enhanced, resulting in a significant 30% increase in the amount of CO2 adsorbed for the optimal Cu-MOFs/GO composites. Likewise, Kumar et al. employed graphene-based materials to reinforce MOF structures for the improvement of CO2 uptake [41
  • ]. The authors used carboxylic acids to modify graphene nanolayers, and then performed in situ synthesis of different MOF-74 materials on the graphene matrix via a solvothermal method (Figure 5). Although the surface area of composites was only slightly increased compared to the initial materials, the
PDF
Album
Review
Published 20 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • hydroxides; layered double hydroxide; layered materials; scale-up process; synthesis; two-dimensional materials; Introduction Since the discovery of graphene [1], research on two-dimensional (2D) materials has become one of the most relevant topics in physics, chemistry, and (nano)materials science [2][3][4
  • ]. These materials play a key role both from a fundamental point of view and regarding potential applications in electronic devices, drug delivery, and energy storage and conversion, to name a few [5][6][7][8]. Layered materials range from monoelementals (i.e., graphene, silicene, germanene, or pnictogens
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • low conductivity of MOFs hampers electron transport, leading to sluggish electrochemical reaction kinetics. To alleviate this problem, highly conductive materials such as graphene, and carbon nanotubes were combined with MOFs to improve overall conductivity. Additionally, the usage of pristine MOFs as
PDF
Album
Review
Published 31 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • University, Hangzhou 310018, China School of Cyberspace Security, Hangzhou DIANZI University, Hangzhou 310018, China 10.3762/bjnano.14.67 Abstract This paper describes a method for preparing flexible composite piezoelectric nanofilms of P(VDF-TrFE)/ZnO/graphene using a high-voltage electrospinning method
  • . Composition and β-phase content of the piezoelectric composite films were analyzed using X-ray diffraction. The morphology of the composite film fibers was observed through scanning electron microscopy. Finally, the P(VDF-TrFE)/ZnO/graphene composite film was encapsulated in a sandwich-structure heart sound
  • , respectively, 2.4 times and 1.6 times greater than those of pure P(VDF-TrFE) nanogenerators [14]. Subash et al. added ZnO nanoparticles and exfoliated graphene oxide to P(VDF-TrFE) to prepare a composite nanofilm with excellent touch sensitivity and high output energy. They also used the piezoelectric film for
PDF
Album
Full Research Paper
Published 31 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • of crystalline Ge suggest the development of a novel Ge–C bond, akin to what has been observed in earlier studies on Ge–Sn and Ge–graphene [49][50]. Upon closer inspection of the Raman spectra between 1200 and 1800 cm−1, it can be observed that the ID/IG intensity ratio increases from 0.79 for BC-800
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • graphene sheets on the surface [18][19]. In flame synthesis, the rapid heating rate causes catalytic activation and nucleation to occur almost instantaneously by the arrangement of carbon atoms on the surface of catalyst nanoparticles, leading to cap formation and liftoff. Figure 2b and Figure 2d show
PDF
Album
Full Research Paper
Published 21 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • Sanju Tanwar Aditi Sharma Dhirendra Mathur Centre of Nanotechnology, Rajasthan Technical University, Kota, Rajasthan, India Materials Research Centre, Malaviya National Institute of Technology, Jaipur, Rajasthan, India 10.3762/bjnano.14.56 Abstract Graphene quantum dots (GQDs) were made via a
  • spectroscopy; electrochemical sensor; graphene quantum dots; malathion; Introduction Global population growth makes food production more challenging, and pesticides are therefore used in agriculture in greater quantities than in the past to maintain and increase crop yields [1][2]. Pesticides containing
  • use of graphene and its derivatives is widespread for electrochemical detection since 2D graphene sheets provide numerous electrochemical sites for the detection of target molecules, while electrons in the sp2-hybridized pz orbital have a faster electron transfer rate, which enhances response time and
PDF
Album
Full Research Paper
Published 09 Jun 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • graphene has also sparked interest in other non-carbon 2D materials [1][2]. One of such materials is 2D silicon, called silicene [3][4]. Using first-principles methods with current computer resources enables us to model structures up to about a few hundred atoms. For larger systems, approximate methods are
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • graphene) may be easier because of the abundance of oxygen functional groups (e.g., carboxyl or hydroxy groups) on the carbon surface [26][31][32], in comparison to pure SiC. The introduction of carbon may help to further adjust the electromagnetic parameters and performance of SiC@ZnO nanocomposites
  • could be well controlled by adjusting the fractions of pristine materials and filler load of the absorbers. A comprehensive comparison with materials from our previous works (SiC@C and SiC@C-Fe3O4) and other reported materials (such as ZnO-decorated SiCnw or graphene/SiC) [16][24][34][35] shows that the
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • of lightweight materials comprising a conductive ingredient (e.g., carbon nanotubes (CNTs), graphene, graphene oxide, and metal particles) embedded in a polymer matrix, have been extensively studied as liquid sensors [14][15][16][17][21][22]. The main idea is to combine the responsive electrical
  • has resurfaced recently as a smart material because of its excellent thermal-mechanical properties, biocompatibility, biodegradability, and flexibility [22][23][30][31]. Composites based on carbon nanotubes or graphene and cellulose have been reported for, among other things, humidity and vapor
  • [39][40]. Besides, graphene films deposited on cellulose paper and a graphene/cellulose composite were also reported as a solvent sensor material [30][33]. However, most of these works rely on cellulose as a paper substrate or as a thick composite film that cannot be readily employed for large-scale
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • .14.42 Abstract Raman spectroscopy is one of the most common methods to characterize graphene-related 2D materials, providing information on a wide range of physical and chemical properties. Because of typical sample inhomogeneity, Raman spectra are acquired from several locations across a sample, and
  • analysis is carried out on the averaged spectrum from all locations. This is then used to characterize the “quality” of the graphene produced, in particular the level of exfoliation for top-down manufactured materials. However, these have generally been developed using samples prepared with careful
  • , although quantification of the amount remains approximate. We therefore recommend this approach as a robust methodology for reliable characterization of mass-produced graphene-related 2D materials using confocal Raman spectroscopy. Keywords: few-layer graphene; graphene; metrology; quality control; Raman
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • molecules was also realized. Kawai et al. synthesized three-dimensional graphene nanoribbons by surface chemistry and showed that local probe chemistry can be used to add different molecules by tip manipulation [115]. Specifically, they demonstrated that radicals created by tip-induced debromination can be
  • . Foster, Kawai, and co-workers have investigated the zero-bias peak at the center of an armchair-type graphene nanoribbon on a AuSix/Au(111) surface using a combination of low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations [116]. The zero-bias peak at the
  • boron site embedded at the center of the graphene nanoribbon was investigated. Si atoms were removed by vertical manipulation with a tip (Figure 5). In this manipulation, the tip was positioned at a silicon site and then moved closer to the silicon atoms while recording the tunneling current. After the
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • Cracow, Poland 10.3762/bjnano.14.34 Abstract In this work, the specific role of the addition of graphene oxide (GO) to state-of-the-art nickel–iron (NiFe) and cobalt–nickel–iron (CoNiFe) mixed oxides/hydroxides towards the oxygen evolution reaction (OER) is investigated. Morphology, structure, and OER
  • different kinds of conductive carbon materials [14][15][16][17][18]. Recently, graphene (Gr)/graphene oxide (GO) has attracted the attention of many researchers due to its high surface area, significant chemical stability, high electrical conductivity, and high mechanical strength [12][19]. Combining a
  • graphene material with Ni-, Fe- and/or Co-based oxides/hydroxides with high chemical reactivity provides both an effective electron pathway through the catalyst [20] and high specific surface area [21], which is desirable for the OER process [13]. The overall electrocatalytic performance of the hybrid
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • cause little damage to adjacent healthy tissues due to extremely localized heating [3]. Generally, the reduction of material dimensions to the nanoscale, such as in graphene, carbon nanotubes (CNT) and polymers, leads to an enhancement of the PT effect due to factors such as improved thermal
PDF
Album
Review
Published 27 Mar 2023
Other Beilstein-Institut Open Science Activities