Search results

Search for "graphite" in Full Text gives 338 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • ) [3][4][5][6][7], epitaxial growth on different substrates [8][9], and the chemical reduction of graphene oxide (GO) [10][11]. In 2008, production of graphene by liquid-phase exfoliation (LPE) of graphite through sonication of graphite powder in N-methylpyrrolidone (NMP) was first proposed by Coleman
  • electrochemical exfoliation, whereby graphene is exfoliated in an electrolyte from an electrode made of graphite [19]. In electrochemical exfoliation, ions from the electrolyte flow towards the graphite electrode and intercalate between the graphene layers. The electrochemical reaction provides a driving force to
PDF
Album
Full Research Paper
Published 18 Jul 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • allotrope of carbon, which combines glassy and ceramic properties with those associated with graphite and has been of scientific and technological interest for over fifty years. Glassy carbon has good electrical and thermal conductivities, excellent chemical stability, and good biocompatibility, which has
  • , it results from the curvature of the glassy carbon tubules. The G-band, the so-called graphitic or tangential band, is characteristic of graphite and originates from the in-plane tangential stretching of the C–C bonds. The intensity of the D-band is much higher than that of the G-band, showing the
  • graphitic carbon with long-range crystalline order. The interlayer spacing is calculated to have a d-spacing of 4.89 Å. Table 1 shows the interlayer spacing of graphite and other selected carbon materials and is further evidence that the tubules are glassy carbon. In Table 1, the interlayer spacing data
PDF
Album
Full Research Paper
Published 19 May 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • decomposition leading to the formation of W(VI) oxide and graphite. This is consistent with an initial DEA step rather than DI leading to partial CO loss while the further, slower decomposition lacks the loss and desorption of intact ligands and is rather dominated by ligand decomposition through DI and surface
PDF
Album
Full Research Paper
Published 04 Feb 2022

Nanoscale friction and wear of a polymer coated with graphene

  • Robin Vacher and
  • Astrid S. de Wijn

Beilstein J. Nanotechnol. 2022, 13, 63–73, doi:10.3762/bjnano.13.4

Graphical Abstract
  • mechanical properties were already being utilised in engineering applications. Graphite powder, essentially thick flakes of graphene, has been used as a lubricant additive for over a century to reduce wear and friction during sliding [5][6][7]. Nevertheless, we still do not understand the wide variety of
PDF
Album
Full Research Paper
Published 14 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • oriented pyrolytic graphite. The lamellar structure with a period of about 4 nm is clearly visible. It is interesting to note that in this case, when reducing the scanning area, it was possible to see (in the frequency channel) the location of molecular chains with a period of 0.7 nm. Such a high
  • . AFM image of the tip on a test grating TGT1 (a); time of the measurement at a point (b). Dissipation mode. Self-organization of palmityl palmitate on graphite. Topography (a, b) and shift of the resonant frequency of the probe (c, d). Supporting Information Supporting Information File 80: Additional
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • spectroscopy, elemental analysis, and inductively coupled plasma optical emission spectrometry are used for characterisation. The modified fibre system is compared to a benchmark system without cobalt additives. Cobalt is known to catalyse the formation of graphite in carbonaceous materials at elevated
  • -rolling at 120 °C directly onto the mat without an additional current collector. Physical characterisation SEM images were recorded using a Quanta FEG 650 (FEI Europe) with an acceleration voltage of 5 kV. The samples were attached to the sample holder using double-sided graphite tape. Conductivity was
  • further improved by applying a copper tape connecting the sample and the graphite tape. To identify the particles decorating the nanofibres, EDX was performed using an Octane Super EDX detector (EDAX). The programme “monte CArlo SImulation of electroN trajectory in sOlids” (CASINO) [23], which simulates
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • carbon black and other amorphous carbons. While Na+ does not insert in graphite in contrast to Li+, hard carbon can store considerable amounts of sodium in the range of 300 mAh·g−1 (Figure 10D) [82]. For their use in sodium batteries hard carbon materials can be pre-sodiated prior to the cell assembly
PDF
Album
Review
Published 09 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • ligands attached to the metal center of the porphyrin were observed regardless of the type of surface (highly oriented pyrolytic graphite (HOPG) and Au surfaces were used), solvent (1-phenyloctane and n-tetradecane) and tip material (Pt/Ir, Au, and W), which indicates that the ligands have to be decoupled
  • this Thematic Issue discuss structural templating effects at the solid–liquid interface by systematically looking at the influence of organic decoupling layers. Reynaerts et al. [76] investigated the suitability of long-chain alkanes as physical decoupling layers from a graphite surface. The occurrence
PDF
Editorial
Published 23 Aug 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • , amorphous substrates. The glasses were cleaned with chloroform before their use in recrystallization studies. Highly oriented pyrolytic graphite (HOPG) was used as non-polar, crystalline substrates (SPI supplies, West Chester, USA). Freshly cleaned HOPG surfaces were prepared by stripping off a layer of
PDF
Album
Full Research Paper
Published 20 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • angle is 70°, and the hemispherical tip radius is 16 Å. We calculate the surface energy maps with a four-layer graphite and gold samples. The dimensions of the graphite and gold substrates are 9 × 9 × 1.1 and 9 × 9 × 0.4 nm3, respectively. All simulations are performed under equal height conditions. The
  • schematic of the AM mode simulation model with conical tip apex is illustrated in Figure 1. The bottom layer atoms of the substrate are fixed to keep the sample stable. For the graphite substrate, the carbon–carbon interactions within each graphene layer are described by the AIREBO potential [55]. The
  • loss function: where n is the number of training samples. The parameters are updated with the gradient descent as where η denotes the learning rate. Results and Discussion Molecular dynamics simulation results Molecular dynamics simulation is used to obtain the energy maps of graphite and gold samples
PDF
Album
Full Research Paper
Published 29 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • control mechanism. In the method of Uvet et al., the levitation height of the microrobot was controlled by an external ring-shaped permanent magnet, and pyrolytic graphite (PG) was used to provide the balance force. The microrobot was composed of SU8 and permanent magnets. The direction of the 3D motion
PDF
Album
Review
Published 19 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • biological fluids, obtained from animal experiments. A multimethod approach was used to examine their behaviour and transformation under experimental conditions relevant for in vivo settings by performing dynamic light scattering (DLS), electrophoretic light scattering (ELS), graphite furnace atomic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • hydrogen [1][2][3][4], environmental remediation [5][6], decomposition of organic pollutants [7], CO2 reduction into hydrocarbon fuels [8][9][10], disinfection [11][12], and selective organic transformations [13][14]. One of the most studied catalysts is polymeric carbon nitride (PCN). This graphite-like
PDF
Album
Full Research Paper
Published 19 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • oscillates around 690 mAh·g−1 up to the 70th cycle. Then, it gradually fades and reaches about 533 mAh·g−1 after 100 cycles. Nevertheless, the measured capacity is still 1.43 times higher than the theoretical capacity of commercially used graphite electrodes (372 mAh·g−1 [10][21]). This behavior is
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • and 25 mA with a graphite monochromator. Step-scan diffractograms were collected in the 2θ range of 3–70° with 0.02° step and 3 s/step counting time. For HRTEM analysis, focused ion beam (FIB) lamellae were prepared using a dual-beam FIB. The lamellae were oriented along the elongation direction. The
PDF
Album
Full Research Paper
Published 28 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • , because it has only a few functional groups on its surface, which limits the chemisorption of gas molecules [28]. Graphene oxide (graphite oxide, GO), in contrast, has numerous oxygen functionalities and few remaining π bonds and is therefore electrically insulating [29]. GO can be reduced (reduced
  • decomposition approach with rGO synthesized from reduced graphite oxide at 400 °C. It is extremely important that the used rGO is thoroughly dried because of the oxyphilic nature of nickel nanoparticles. Therefore, before the nanoparticle synthesis, the rGO was dried using a turbo molecular pump at 5 × 10−7
  • oxidation and thermal reduction process using natural graphite (type KFL 99.5 from AMG Mining AG, former Kropfmühl AG, Passau, Germany) as starting material. Graphite was oxidized according to [67]. Reduction of the graphite oxide was performed at 400 °C. Before using rGO in the nanoparticle synthesis, it
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • detector in the dark field [20]. Kavanagh et al. used a silicon diode array as a pixelated sensor for transmission imaging to observe ion beam scattering with a static beam and as an end-point detection for pore milling into graphite sheets [21]. This work presents the design and capabilities of a dark
  • microscopy (EFTEM) data, both being established techniques for the thickness measurement of thin films. All three presented methods, STIM, XPS, and EFTEM, require an assumption about density and composition of the material in order to calculate absolute thicknesses, so graphite was chosen as a well
  • Turchanin et al. [27]. In order to provide comparability of the results to STIM and EFTEM, the attenuation length was assumed to be 27 Å, the same as that of graphite [28]. The XPS results yield values of 2.1 nm for the thin CNM and 12.4 nm for the thick CNM. Both values are in good agreement with 2.2 nm
PDF
Album
Full Research Paper
Published 26 Feb 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • ), sensitivity, and moderate body size make Caenorhabditis elegans (nematode) [45] an ideal model organism to study environmental nanotoxicity at the nanoscale level. C. elegans was used as a model organism to evaluate the impact of an exposure to a 50–100 mg/L dose of graphite, graphite oxide nanoplatelets, and
PDF
Album
Review
Published 12 Feb 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • the case of physical methods for producing Cu–Au nanoparticles, it seems possible to create particles with the desired chemical composition. In [3], the Cu–Au nanoparticles obtained by laser deposition on a graphite substrate were analyzed via transmission electron microscopy–energy-dispersive X-ray
PDF
Album
Full Research Paper
Published 19 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • graphite and it is explained by the destabilization of π electrons due to the curvature of the graphene sheets [35]. As observed from Figure 1e and Figure 6, there are large spectral differences between free MnFe2O4, MnFe2O4/MWCNTs, and pristine MWCNTs. Considering that the probing depth of UPS is only at
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • calcined at 700 °C, NiFe-PBA/PP-900 had a grape-like morphology (Figure 2c). The crystal structure of NiFe-PBA/PP-T samples was obtained from XRD (Figure 2d). A characteristic peak at approx. 2θ = 26.4° was observed in the XRD patterns of both samples, and was attributed to the (002) plane of graphite
  • particle shown in Figure 3c was tightly surrounded by lattice fringes, and the measured d-spacing of these lattices was approx. 0.30 and 0.34 nm, which corresponded to the (111) plane of NiCx and to the (002) plane of graphite, respectively. The element mappings (Figure 3d and Figure 3e) show that C and N
PDF
Album
Full Research Paper
Published 02 Dec 2020

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • methods; atomic force microscopy (AFM); molecular dynamics (MD); Raman spectroscopy; nanostructured materials; Introduction Layered materials such as graphite, talc, and transition metal dichalcogenides (TMDs), held together by strong covalent bonds within layers and relatively weak van der Waals
  • several substrates is far from complete. Besides, uncertainties in the measured values of α can be large. For instance, experimental values of α for graphite ranging from 0.12 up to 0.72 N/m have been reported [24][25][26][27][28][29][30][31]. Regarding the bending stiffness κ, experimental values have
  • ][26][27][28][29][30][31]). It is worth mentioning that our result (α = 0.25 N/m) compares well with other direct experimental determinations of α (0.27 N/m [28] and 0.37 N/m [30]), in which layers of graphene in highly oriented pyrolytic graphite were mechanically manipulated using a probe. Besides
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • % purity, Figure 1a) and 2H-TCNPP (2, Porphyrin Systems, 97% purity, Figure 1b) were evaporated from a graphite crucible effusion cell. Co-DPP was evaporated at a measured cell temperature of 540 K and 2H-TCNPP at 640 K, which resulted in a molecular deposition rate of 0.04 and 0.06 nm−2·min−1. Both
PDF
Album
Full Research Paper
Published 05 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • transport and improve the efficiency of the thermoelectric generator [7]. Silicon nanowire arrays are also an emerging anode material for integrated lithium-ion batteries. They have a ten times higher theoretical capacity than graphite and can be used for cells with high energy density. However, these
PDF
Album
Full Research Paper
Published 23 Sep 2020
Other Beilstein-Institut Open Science Activities