Search results

Search for "graphite" in Full Text gives 338 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • . Parylene C forms transparent, pinhole-free conformal coatings of thicknesses as low as 0.1 μm with excellent dielectric and mechanical properties. Increasing thickness to 0.2 mm suffices to uniformly cover rough colloidal-graphite contacts. Transistors with rubrene as semiconductor and parylene as
PDF
Album
Review
Published 28 Jul 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • . While graphene oxide can be readily dispersed in aqueous solutions, graphene and rGO require appropriate organic solvents [11]. N-methyl-2-pyrrolidone (NMP) is perhaps the ideal solvent for the exfoliation of graphite and graphene. However, the aggressive nature of this solvent led us to choose ethylene
  • graphene oxide (rGO) functionalized with Pt nanoparticles (rGO–Pt) Graphene oxide (GO) was synthesized by oxidation of graphite flakes (Aesar, 325 mesh), using a modified Hummers method [19], as described previously [20]. Next, GO was reduced and functionalized with Pt nanoparticles (Figure 5). First, 75
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime

  • Shende Rashmi Chandrabhan,
  • Velayudhanpillai Jayan,
  • Somendra Singh Parihar and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2017, 8, 1476–1483, doi:10.3762/bjnano.8.147

Graphical Abstract
  • C60 molecules as additive in lubricant oil [8][9][10]. Subsequently, researchers studied the tribological properties of carbon-based additives such as graphite [1], graphene [2][6], carbon spheres [11][12] and carbon nanotubes [13][14][15]. In addition, several reports are available on the
  • the range of 2θ = 5° to 2θ = 90° using a Rigaku X-ray diffractometer. Raman scattering spectra of graphite, GO and N-rGO were collected by using a WITec Raman spectrometer equipped with Nd:YAG laser (λ = 532 nm). The surface morphology of the sample was analyzed by using field-emission scanning
  • holder and the constant load of 400 N was applied. Figure 3 represents the schematic of the ball-pot assembly in a four-ball tester. Results and Discussion Materials characterization The XRD patterns of graphite, GO and N-rGO are depicted in Figure S1 (Supporting Information File 1). The intense
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2017

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

  • Martin Börner,
  • Laura Blömer,
  • Marcus Kischel,
  • Peter Richter,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Pablo F. Siles,
  • Maria E. N. Fuentes,
  • Carlos C. B. Bufon,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Daniel Breite,
  • Bernd Abel and
  • Berthold Kersting

Beilstein J. Nanotechnol. 2017, 8, 1375–1387, doi:10.3762/bjnano.8.139

Graphical Abstract
  • ; N, 7.23. X-ray crystallography Crystals of 6 and 7 were grown by slow evaporation of a mixed acetonitrile/ethanol solvent system and subjected to diffraction experiments on a STOE-IPDS-2T-diffractometer. Graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) was used throughout. The data were
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • density [5][6][7][8]. So far, among all the commercial lithium-ion batteries, graphite plays an extremely important role in anode materials; nevertheless, structural deformation, electrical disconnection and the initial loss of capacity hinder its further development [9][10]. Titanium dioxide (TiO2) is
  • considered to be an alternative anode material to graphite, which can be attributed to the superior advantages of titanium dioxide such as low-cost, eco-friendliness, nontoxicity and high abundance [10]. Furthermore, safety and stability of titanium dioxide are higher than those of graphite, because since Li
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • radiation, rotating anode, Bragg–Brentano scheme, graphite monochromator) diffractometer. XRD patterns and TEM images of different samples with varying AgCl amount: (a) AgCl_0, (b) AgCl_1, (c) AgCl_4, (d) AgCl_10, (e) AgCl_12 and (f) AgCl_40. (ZB: zinc blende, WZ: wurtzite.) HRTEM images of TP (sample
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • noble metal-free catalytic material for the hydrogen evolution reaction (HER) in electrochemical water splitting, which is fundamental to a hydrogen-based energy economy [14]. Density function theory showed the feasibility of MoS2 supported on graphite to catalyse electrochemical hydrogen evolution at a
PDF
Album
Full Research Paper
Published 22 May 2017

Fully scalable one-pot method for the production of phosphonic graphene derivatives

  • Kamila Żelechowska,
  • Marta Prześniak-Welenc,
  • Marcin Łapiński,
  • Izabela Kondratowicz and
  • Tadeusz Miruszewski

Beilstein J. Nanotechnol. 2017, 8, 1094–1103, doi:10.3762/bjnano.8.111

Graphical Abstract
  • described a ball milling process to efficiently functionalize and exfoliate pristine graphite directly into graphene phosphonic acid. In the first step, graphite is ball-milled for 48 h with red phosphorus to produce a derivative that is edge-functionalized with phosphorus. Then, upon exposure to air
  • moisture, the resultant derivative of graphite is spontaneously oxidized forming phosphonic groups, with simultaneous exfoliation to produce phosphonic acid graphene [4]. However interesting, the described method is time consuming and requires specialized equipment. A multistep procedure for
  • first-order scattering of the E2g mode at 1578 cm−1 and broad D band at 1350 cm−1. The overtone 2D band can be seen in the range from 2700 to 3000 cm−1. The D band is attributed to phonon branches around K and together with its overtone 2D band both are dispersive bands observed in graphite-derived
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2017

Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO2 detection

  • F. Villani,
  • C. Schiattarella,
  • T. Polichetti,
  • R. Di Capua,
  • F. Loffredo,
  • B. Alfano,
  • M. L. Miglietta,
  • E. Massera,
  • L. Verdoliva and
  • G. Di Francia

Beilstein J. Nanotechnol. 2017, 8, 1023–1031, doi:10.3762/bjnano.8.103

Graphical Abstract
  • different methods for producing graphene over large areas [3][4], and especially in comparison with mechanical exfoliation methods that provide high-quality material but only low throughput. LPE consists of the exfoliation of graphite in organic electron-donor solvents [5][6][7], which are generally high
  • -boiling and need to be handled with care because of their toxicity. Recently, the potential to effectively exfoliate natural graphite in a hydro-alcoholic mixture in a process of low environmental impact has been demonstrated [8]. In general, the liquid-phase preparation of graphene extends its
  • sonication-assisted liquid phase exfoliation of graphite in a mixture of water and isopropanol as described in details in the Experimental section and fully investigated in [8]. As already reported, the dispersed material consists of exfoliated flakes having less than five layers and a lateral size around
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • synthesis [69]. In [66][67], XRD studies revealed the formation of iron oxides and carbide before the nanotube growth. Iron carbide was observed immediately before the start of the growth [67], and the process of its decomposition to Fe and graphite coincided with the onset of the nanotube growth [66]. In
  • hydrocarbon was decomposed through the bulk of metal to the sites of the crystallization into a graphite phase (carbon filaments). The degraded intermediate carbide was restored as a result of the decomposition of hydrocarbon, and this cyclic process took place as long as there were the gaseous source of
PDF
Album
Review
Published 11 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • resemble that of amorphous carbon [68]. Following the laser treatment, the characteristic π* and σ* peaks have sharper spectral features, indicating that the carbon has been transformed from amorphous to graphitic. The laser treatment thus induces C phase transformation from amorphous to graphite, which is
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • -act X-ray detector. Prior to measurements the samples were coated with a 100 nm carbon layer using a POLARON CC7650 Carbon Coater. Electrochemical impedance spectroscopy (EIS). For EIS the dry IGs were contacted with a graphite paper layer and sandwiched between platinum electrodes. The graphite paper
  • layer was used as a sacrificial layer (used one time for one sample) to avoid a direct contact with the platinum electrode. Even though the IGs are rather stable, their surfaces may be slightly sticky; this especially applies at higher temperatures. The roughness between the graphite and ionogel is
PDF
Album
Full Research Paper
Published 29 Mar 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • Arpita Jana Elke Scheer Sebastian Polarz Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany Department of Physics, University of Konstanz, 78457 Konstanz, Germany 10.3762/bjnano.8.74 Abstract Single layer graphite, known as graphene, is an important material because of its
  • fields. Material property requirements for specific applications Graphite is commercially used as an anode material for LIBs due to its large lithium storage capacity of 372 mAh·g−1. However, this is not sufficient for applications requiring high energy capacity. Single layer graphene has a high
  • insertion and extraction process, which results in decreased cyclability and rate capabilities [27]. These drawbacks can be overcome by the incorporation of graphene with TMO. As mentioned above, graphene has a relatively large capacity, much higher than commercial graphite. The high conductivity and large
PDF
Album
Review
Published 24 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • vehicles and battery electric vehicles [1][2][3][4][5][6][7][8]. Graphite, is the most commonly used anode material for LIBs, has a theoretical specific capacity of 372 mAh·g−1 [9], which does not meet the requirements of hybrid electric vehicles. Thus, the development of next-generation batteries with low
  • α-Fe2O3 microspheres was much better than that of commercial graphite (372 mAh·g−1) although further improvement in cyclic stability was needed [20]. An effective method to improve the electrical conductivity of Fe2O3 is to fabricate Fe2O3/carbon nanotube (CNT), Fe2O3/graphene or Fe2O3/graphene/CNT
PDF
Album
Full Research Paper
Published 17 Mar 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • strong magnetic dipolar interactions during the evaporation of 6 nm cobalt nanoparticles on oriented pyrolytic graphite [19]. Cobalt wires were obtained by the reduction of cobalt salt at high temperatures [20], and discs were produced by applying high temperature in a mixed surfactant system of oleic
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption

  • Jesús C. Echeverría,
  • Ignacio Calleja,
  • Paula Moriones and
  • Julián J. Garrido

Beilstein J. Nanotechnol. 2017, 8, 475–484, doi:10.3762/bjnano.8.51

Graphical Abstract
  • region. The pellets were heated in a furnace overnight at 423 K to minimize the amount of water adsorbed by the samples. X-ray diffraction (XRD) patterns were acquired at ambient temperature on a Siemens D-500 X-ray diffractometer with a copper rotating anode and a graphite monochromator to select the Cu
PDF
Album
Full Research Paper
Published 21 Feb 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • graphite [11]. Considering the scalable graphene production methods, epitaxial graphene grown on silicon carbide has also been demonstrated as an excellent material for sensing [12]. However, for many applications, flexible and disposable sensors are needed. For these applications graphene has to be easily
PDF
Album
Full Research Paper
Published 20 Feb 2017

Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

  • Nina J. Blumenstein,
  • Fabian Streb,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Zaklina Burghard and
  • Joachim Bill

Beilstein J. Nanotechnol. 2017, 8, 296–303, doi:10.3762/bjnano.8.32

Graphical Abstract
  • with a Nanoscope 5 controller in contact mode. Commercially available MESP-RC tips from Bruker were used as top electrodes. The ZnO samples were glued to metallic sample holders with a graphite tape and contacted with silver paste. Calibration of the photodiode was performed by measuring the force
PDF
Album
Full Research Paper
Published 30 Jan 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • electrodes. The theoretical capacity of commercially used graphite anodes is only 372 mAh/g, which extremely limits the energy density of LIBs [4]. Thus, much attention has been paid to the pursuit of high performance anode materials to replace graphite. Among them, silicon is considered as the most
  • side covered by insulating type) was pretreated in alcohol and then used as the anode. The cathode was a graphite rod with 55 mm length and 5 mm diameter, and was kept 25 mm away from the anode. The anodization process was carried out in 0.8 M NaOH aqueous solution, and a constant current of 6 mA was
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

  • Cristian Vacacela Gomez,
  • Michele Pisarra,
  • Mario Gravina and
  • Antonello Sindona

Beilstein J. Nanotechnol. 2017, 8, 172–182, doi:10.3762/bjnano.8.18

Graphical Abstract
  • above about 2 eV. These excitations, shown in Figure 2b–e, are analogous to the well-known π and π–σ plasmons of graphene [51][52], as displayed in Figure 2a. Similar features occur in bilayer graphene [51], multilayer graphene [52], graphene–metal interfaces [53][54][55][56][57][58][59] and graphite
PDF
Album
Full Research Paper
Published 17 Jan 2017

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • graphene multilayers, electron backscattering is allowed [2]. However, when the layers of graphene are not strongly electronically coupled, this scenario is not always realized. Indeed, for turbostratic graphite, where Bernal stacking is destroyed, even for a very large number of layers, the unique
  • properties of graphene can be preserved [3]. Double (triple) layer turbostratic graphite is also known as twisted graphene (TG). This term reflects the fact that both the electronic and structural properties of double layer graphene can be well-described by the in-plane rotation angle θ between the graphene
  • , the energy range 398–404 eV can be related to the different nitrogen configurations, such as pyridine, pyrrolic, graphite, and pyridine N-oxide (see, e.g., [45]). We also cannot exclude the formation of a very stable nitrile CN bond (sp configuration) [46]. Based only on the XPS data we cannot make an
PDF
Album
Full Research Paper
Published 16 Jan 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • , Department of Industrial Engineering, University of Naples Federico II, Naples, Via Claudio 21, 80125 Napoli, Italy 10.3762/bjnano.8.3 Abstract In this work we present a novel route to produce a graphene-based film on a polymer substrate. A transparent graphite colloidal suspension was applied to a slat of
  • poly(methyl methacrylate) (PMMA). The good adhesion to the PMMA surface, combined with the shear stress, allows a uniform and continuous spreading of the graphite nanocrystals, resulting in a very uniform graphene multilayer coating on the substrate surface. The fabrication process is simple and yields
  • bending tests. The electrical transport was investigated as a function of the applied stress. The structural and strain properties of the polymer composite material were studied under stress by infrared thermography and micro-Raman spectroscopy. Keywords: graphene; graphite; IR thermography; micro-Raman
PDF
Album
Full Research Paper
Published 03 Jan 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • . Our technique differs from the method described in [30] in so far that only a single ion source used. Instead of a second ion source we used a resistive evaporator. For this purpose, the vacuum chamber was equipped with a 10 mm square graphite evaporator. The usage of such an evaporator does not
PDF
Album
Full Research Paper
Published 03 Jan 2017

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • sponges [17]. Carbon nanofoams have first been produced using pulsed laser ablation of glassy carbon in argon atmosphere [18] and later, as graphite in liquid nitrogen [19]. Pulsed-laser deposition has also been used for the fabrication of carbon nanofoam electrodes [20]. Carbon nanotube foam in the form
  • averaging over the densities of several foam samples. Using two different process temperatures of 160 and 185 °C in the autoclave resulted in average densities of 0.104 g·cm−3 and 0.278 g·cm−3, respectively. These densities are significantly lower than the densities of graphite (2.267 g·cm−3), amorphous
  • ], nanoporous carbons [46], carbon nanotube scaffolds [47], and carbon foams [48][49]. The densities of these carbon materials are significantly lower compared to “heavy carbons” such as pristine graphite (2.26 g·cm−3), CVD grown carbon films (2.14 g·cm−3 [50]), or carbon nanotube forests (1.6 to 0.38 g·cm−3
PDF
Album
Full Research Paper
Published 27 Dec 2016

Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

  • Dessislava Kostadinova,
  • Ana Cenacchi Pereira,
  • Muriel Lansalot,
  • Franck D’Agosto,
  • Elodie Bourgeat-Lami,
  • Fabrice Leroux,
  • Christine Taviot-Guého,
  • Sylvian Cadars and
  • Vanessa Prevot

Beilstein J. Nanotechnol. 2016, 7, 2000–2012, doi:10.3762/bjnano.7.191

Graphical Abstract
  • rpm for 10 min followed by three washing cycles with deionized water and further dried at room temperature. Characterisations. Powder X-ray diffraction patterns were recorded on a X’Pert Pro Philips diffractometer with a diffracted beam graphite monochromator and a Cu Kα radiation source in the 2θ
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2016
Other Beilstein-Institut Open Science Activities