Search results

Search for "habitat" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Ferromagnetic resonance spectra of linear magnetosome chains

  • Elizaveta M. Gubanova and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2024, 15, 157–167, doi:10.3762/bjnano.15.15

Graphical Abstract
  • produce elongated magnetite nanoparticles [1][2][10][11]. A linear chain of uniformly magnetized magnetosomes grown inside a magnetotactic bacterium is a kind of magnetic needle that helps the bacterium navigate in the weak Earth's magnetic field in search of the best habitat [1][2][3][4]. Chains of
PDF
Album
Full Research Paper
Published 05 Feb 2024

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • granules may be present, which constitute an additional layer of structuring between the bristles and the combs (Figure 3d). Depending on systematic group and habitat, the surface structure is highly variable without changes of the basic pattern [21][23]. These specific surface structures are remarkable in
PDF
Album
Perspective
Published 17 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • lower values than smooth surfaces. The safety factor went down with body mass and with surface roughness, suggesting that smaller animals may be more likely to occupy rough substrates in their natural habitat. Keywords: allometry; biomechanics; ecology; habitat; ontogeny; substrate; Introduction
  • surface roughness values in our experiments (Table 2). This also encompasses much of the range of natural tree surfaces that might be found in the habitat of Tokay geckos. Frictional adhesion and safety factor Larger animals generated greater amounts of frictional adhesion compared to smaller individuals
  • adhesion, measured experimentally, increased with body size across all surfaces. However, adhesive safety factor was not only lower on rougher surfaces, but also lower for larger animals. This has implications for ecology, especially habitat use through ontogeny, but also biomimetics. If we are attempting
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • the euplantular AMS suggests a high dependence of the microstructure to the habitat of the species. Ground-dwelling stick insects reveal nubby microstructures unrelated to their phylogenetic position, as well as canopy-dwelling species, which possess smooth structures without cuticular patterns on the
PDF
Album
Review
Published 15 Jul 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • ] reported that fruit flies exposed to 20 mg/L of Ag NPs were unable to complete their lifecycle. However, after a long-term exposure to Ag NPs, later generations of flies had fecundity levels similar to those of the fruit flies from the control group. Its natural habitat, rapid life cycle (≈4 days
PDF
Album
Review
Published 12 Feb 2021

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • , determining their use of certain structures of the habitat. In Nicrophorus species (and other insects), subtle changes of the chemical composition of the cuticular surface secretion might be metabolically easy to achieve. Selection pressures other than locomotion (e.g., climatic conditions) [2] might have
PDF
Album
Full Research Paper
Published 04 Jan 2019

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • related to water transport, although in this case not for camouflage but hydration purposes, which is vital considering the natural habitat of this lizard is the desert. The humidity in the air or moisture at the surface of rocks on which the lizard is standing can condense at the skin tiles, flowing
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • ; Introduction Areas with loose, aeolian sand in the deserts of North Africa and the Arabian Peninsula are the habitat of the lizard Scincus scincus [1] (see Figure 1a). It hides from predators by burying in sand within seconds. This defence strategy is also known from other reptiles [1]. S. scincus, however, is
  • granular materials. (a) Photograph of a sandfish (S. scincus) in its natural habitat (copyright Gerrit Jan Verspui). (b) Photograph of scales from moulted sandfish skin (S. scincus) examined in this study. Cut parts of the moulted skin or singled scales were used for all measurements. (c) The typical
  • the Reptilium Landau, Germany, for stimulating and helpful discussions. The photos of a sandfish in its natural habitat shown in Figure 1a and in the graphical abstract were kindly provided by Gerrit Jan Verspui (http://www.gertjanverspui.com). We thank Georg Gassner and Felix Hulbert for the samples
PDF
Album
Full Research Paper
Published 02 Oct 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • ., knob-ending tube feet, disc-ending tube feet, and reinforced disc-ending tube feet – and it has been predicted that the morphology of tube feet is more influenced by adaptations to the habitat than by evolutionary lineage [14][31]. Adults of A. gibbosa can be found in crevices or under boulders on
  • granules is variable and a correlation between granule ultrastructure and species habitat has been predicted in sea stars [32][36]. Echinoderm adhesive granules can be divided into five categories: (1) homogeneous granules, (2) heterogeneous granules with an irregular mixture of two materials, (3) granules
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Collembola cuticles and the three-phase line tension

  • Håkon Gundersen,
  • Hans Petter Leinaas and
  • Christian Thaulow

Beilstein J. Nanotechnol. 2017, 8, 1714–1722, doi:10.3762/bjnano.8.172

Graphical Abstract
  • orders of Collembola and a wide range of surface structures and habitat types are considered in these two studies, it seems likely that the granule area fraction of most Collembola will fall within the two extremes of 0.111 to 0.709. If Equation 2 is used to estimate the contact angle of this range of
PDF
Album
Full Research Paper
Published 18 Aug 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • excellent climbing abilities which allow them to efficiently move through their typically arboreal habitat, doing so using specialised adhesive pads found distally on the ventral surface of each toe. The pads stick by means of ‘wet adhesion’, whereby a thin fluid layer is produced by the pad which creates
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • macrozobenthos of the marine intertidal. Third, flow forces acting on an animal depend on the flow velocity, which can show huge variations between different habitats and even inside the same habitat. Fourth, the shape and other properties (such as elasticity) of the animal also strongly influences drag and lift
PDF
Album
Review
Published 17 Dec 2014
Other Beilstein-Institut Open Science Activities